V. Rego

Th, Mar 5, 2016

Week 8, Examples 2

1.py

Let's just use randrange and random

from random import *

def main():
 # generate 10 random numbers between 1 and 100
 # these numbers will be "uniformly distributed" between 1 and 100
 # (which means each number has the same probability of occurring)
 print("Uniformly random numbers in a given range \n")
 for i in range(10):
 number = randrange(1,101)
 print("{0:2} {1:3}".format(i+1,number))

 # now generate 10 numbers that are uniformly distributed between 0 and 1.
 print("\n\nUniformly random numbers between 0 and 1 \n")
 for i in range(10):
 number = random()
 print("{0:2} {1:0.6f}".format(i+1,number))

main()

2.py

Want to toss a coin and find out how many tosses are required for it to land "H" (heads).

Let the user input p, where p = probability that on a any toss the coin comes up H.

The number of tosses until the coin comes up H is called a GEOMETRIC random variable.
Since the probability is p, it is called a geometric(p) random variable.

```python
from random import *

def toss(p):
    if (random() <= p):
        return("H")
    else:
        return("T")

def main():
    p = eval(input("Probability of H on any toss for your coin? "))
    n = eval(input("How many coin-tossing experiments?" ))
    for i in range(n):
        seq =[]
        while(1):
            result = toss(p)
            seq.append(result)
            if (result == "H"):    break

        print(seq)
        print()

main()
```

Let X = number of tossed to get H on any given experiment.

Then $P(X = k) = \text{probability that the number of tries to get } H \text{ is } k$ (i.e., that's the meaning)

$$
\begin{align*}
 k-1 \\
 = (1-p) . \quad p \quad \text{for } k = 1,2,3,4,5,........
\end{align*}
$$

This tells you the exact probability that k tries are required
#3.py

Just to remind you that we can pass a list to a function and change it

def emptyout(list):

 while(len(list)>0):
 list.pop() # unless you specify an index, it removes the first item

def main():

 items=['1','5','22','91','7']

 print("Before function call\n")
 print(items)

 emptyout(items)

 print("\n\nAfter function call\n")
 print(items)

#4.py

Let's put n distinct numbers in a list and "permute" the list k times.
To "permute" is to make one arrangement. With n objects there are a total of n! arrangements.

We won't try to list all the arrangements. You can do this for homework, by extending the
idea shown here just a bit.

In our example we don't check that a permuted list has not been repeated. For your homework
problem you can do this check, but it would be taxing. It's better to find
lists in order (as if you were counting)

from random import *

def permute(a):

 n = len(a)
output = []

while(len(output) < n):
 index = randrange(1,n-len(output)+1)
 output.append(a.pop(index-1))

return(output)

def main():

 n = eval(input("How many distinct numbers in your list? "))

 list = []

 print("Enter the ", n," numbers \n") # hit return after each number entered

 for i in range(n):
 next = eval(input())
 list.append(next)

 print("\n",list,"\n")

 m = eval(input("How many permutations do you want? "))

 for j in range(m):
 # copy list into dup list

 dup = []
 for k in range(len(list)): dup.append(list[k])

 print(permute(dup))

main()

#___
#5.py
#This shows the inner-workings of a linear congruential (uniform) random number generator.

from math import *
def uniform(seed):
 d2p31m = 2147483647
 d2p31 = 2147483711
 seed[0] = 16807*seed[0] - floor(16807*(seed[0])/d2p31m) * d2p31m
 return(fabs((seed[0]/d2p31)))

def main():
 seed=[1234567] #use any 7-10 digit number as the initial seed and then do not
 #touch the seed. Uniform() will do the rest.
 for i in range(100):
 print(i,uniform(seed))