Week 3, Examples 2

```python
# 1.py
# If-statement

def wait():
    x = input()
    print(" ")

def main():

    number = eval(input("Enter any number: "))

    wait()

    if (number >= 0):
        print(" Hello Larry!")

main()
```

2.py

```plaintext
T ---------
<p>| |
|          |
|          |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>
```
If-else-statement (2-way decision, fork in the road)

def wait():
 x = input()
 print(" ")

def main():

 # input any non-negative number to print "Larry", else print "Moe"

 number = eval(input("Enter any number: "))

 wait()

 if (number >= 0):
 print(" Hello Larry!")
 else:
 print ("Hello Moe!")

main()

#3.py
Nested If-else-statement (4-way decision, each fork leads to another fork
in the road. By road we mean "execution path taken by the CPU" based on
conditions being True or False)

def wait():
 x = input()
 print(" ")

def main():
 # input any number
 # number > 10 prints "Larry"
 # 0 <= number <= 10 prints "Moe"
 # number < -10 prints "Curly"
 # -10 <= number < 0 prints "Shemp"

 # These print statements are only used to show how the "if-else" works.
 # In general there will be statements and function calls, etc., in each
 # block, depending on what you want to have done.

 # NOTE: Be careful. When you test for conditions, make sure you account for
 # ALL the different cases, i.e., all the possible paths. Otherwise the program
 # may take a path that you did not expect, and it will take some effort to
 # trace this later --- to find which condition(s) you missed.

 number = eval(input("Enter any number: "))
 wait()

 if (number >= 0):
 if (number > 10):
 print(" Hello Larry!")
 else:
 print(" Hello Moe!"
 else:

 # if we are here, it means number < 0

 if (number < -10):
 print(" Hello Curly!")
 else:
print(" Hello Shemp!")

main()

#
#4.py

Same example as in 3.py, except that we use "elif" instead of nested if-else

Nested If-else-statement (4-way decision, each fork leads to another fork # in the road. By road we mean "execution path taken by the CPU" based on # conditions being True or False)

def wait():
 x = input()
 print(" ")

def main():

 # input any number
 # number > 10 prints "Larry"
 # 0 <= number <= 10 prints "Moe"

 # number < -10 prints "Curly"
 # -10 <= number < 0 prints "Shemp"

 # These print statements are only used to show how the "if-else" works.
 # In general there will be statements and functions etc in each block,
 # depending on what you want to have done.

 # NOTE: Be careful. When you test for conditions, make sure you account for # ALL the different cases, i.e., all the possible paths. Otherwise the program
 # may take a path that you did not expect, and it will take some effort to # trace this later --- to find which condition(s) you missed.

 number = eval(input("Enter any number: "))
 wait()
if (number >10):
 print(" Hello Larry!")
elif (0 <= number <= 10):
 print(" Hello Moe!")
elif (number < -10):
 print(" Hello Curly!")
else: # notice how the "else" at end catches all the remaining cases
 print(" Hello Shemp!")

main()