#____________ ways of using functions _____________________________

#0.py

Your text-book calls certain functions "higher-order function". Why?
Such a function takes as arguments: some function (or list of functions),
and a set of data values.
It applies the function (or list of functions) to each of the data values
and returns, in general,
a list of results.

We will see examples of these higher-order functions in file 1.py.
Before that, let's look at some simple things we can do with functions.
This is the output from the Idle shell. Try it out yourself.

>>> >>> >>>
>>> abs
<built-in function abs>
>>> import math
>>> math.sqrt
<built-in function sqrt>
>>> f = abs
>>> f
<built-in function abs>
>>> f(-4)
4
>>> >>> >>> flist = [abs, math.sqrt]
flist is a list of two functions
>>> flist
[<built-in function abs>, <built-in function sqrt>]
>>> # Here is another way to call the math.sqrt function
>>> flist[1](9)
3.0
>>> >>>
>>> #Now look at how we can pass a function to another function as an
argument/parameter
>>> >>> def example(function_name, data_for_the_function):
 return function_name(data_for_the_function) #calling the func,
returning result

```python
>>> example(abs, -4)
4
>>> example(math.sqrt, 9)
3.0
>>> example(math.sqrt, 2)
1.4142135623730951
>>> example(flist[1], 25)
5.0
```
\[f = \lambda x, y : (x+y)^2 \] # want the function \((a+b)^2\) for parameters \(a, b\)

Now say \(x = 21\) and \(y = 27\)

result = f(21, 27)

print("result = ", result)

The use of Lambda becomes clear when you use it together with the "map" function
What is the map function? Let's understand what the map function does.
The map function allows you to apply a given function to all of the items in a sequence.

result = map (some_function, sequence)

So you see the first parameter is a function, and then comes any sequence you want the function to act on

Example: 1 mi (mile) = 1.60934 km (kilometers). And 1 km = 0.621371 mi.
Suppose we want conversion functions

def miles(km):
 return(km*0.621371) # takes in km, returns miles

def kilometers(mi):
 return(mi*1.60934) # takes in mi, returns km

Let's say that for our Christmas vacation we have the choice of driving to five places. Since we do things in terms of "miles" in the US, the distances are all in miles.
Say distances = [121, 164, 197, 229, 315] five distances in miles
We'd like to convert them all to km, and maybe also then back to miles
def test2():
 dists_in_miles = [121, 164, 197, 229, 315]
 K = list(map(kilometers, dists_in_miles)) # get list of distances in km
 print("Distances in km:", ["%0.2f" %d for d in K]) # also made the distances strings in output
 M = list(map(miles, K)) # get list of distances in miles
 print("Distances in miles:", ["%0.2f" %d for d in M]) # also made the distances strings in output

You can apply map to several lists, but each list has to have the same length.

Suppose we want to find the products of numbers in three lists. First we'll write a function
that map can use: this function will find the product of three numbers

def prod3(x,y,z): return(x*y*z)

def test3():
 Products = list(map(prod3, [2, 4, 6, 8], [3, 5, 7, 9], [2, 2, 2, 2]))
 print("List of products: ", Products)
 #Observe how it uses the first item in each list, then the second, then the third, etc.

... IMPORTANT: Note that the map function applied some function to DATA in a sequence ...

Now we understand the "map" function. Let's look at how to use the map function together
with the lambda operator
#
How to combine the lambda operator and map function

Suppose you did not want to have to write and keep functions like "kilometers", "miles" and
"prod3". Instead you want to define and use them on-the-fly WITHOUT NAMES, and discard
them immediately after using them (so storage requirement are reduced)

def miles(km):
 return(km*0.621371) # takes in km, returns miles

def kilometers(mi):
 return(mi*1.60934)

def test4():

dists_in_miles = [121, 164, 197, 229, 315]

 # Now these functions will seem "anonymous" they have no names
 K = list(map(lambda mi: mi*1.60934, dists_in_miles)) #define & use this function only here

 print(" Distances in km:", ["%0.2f" %d for d in K]) # also made the distances strings in output

 M = list(map(lambda km: km*0.621371, K)) #define and use this function only here

 print(" Distances in miles:", ["%0.2f" %d for d in M]) # also made the distances strings in output

 Products = list(map(lambda a, b, c: a*b*c, [2, 4, 6, 8], [3, 5, 7, 9], [2, 2, 2, 2]))

 print(" List of products: ", Products)

Now the map and lambda idea do not apply to just data. They can apply to functions too.

Lets say we want x^2, x^3, x^4, x^5, x^6, x^7 for some input x. We'll use simple one-line functions
in our example, but they need not be so simple

def power2(x): return(x**2)
def power3(x): return(x**3)
def power4(x): return(x**4)
def power5(x): return(x**5)
def power6(x): return(x**6)
def power7(x): return(x**7)

def test5():
Recall that the "map" function has two arguments. The second argument is a sequence.
We'll give "map" the following list of functions for this sequence.

 function_list = [power2, power3, power4, power5, power6, power7] # list of function names

The first argument to "map" is a function. Since we want to apply the above power functions to
a list of numbers, we'll use a lambda function to generate that list of numbers.

 for i in range(7):
 powers = list(map(lambda x: x(i), function_list))
 print(powers) # first all powers of 0, then 1, then 2, then 3,
 up to powers of 6
#

The filter function enables us to apply a function to each of the elements in a list. Each item for
which the result is True will be included in the result list; the others are ignored.
filter(function, list)

def test6():

 # Let's filter a list to get only the even numbers
 data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
 odds = list(filter(lambda x: not (x%2), data))
 print(odds, "\n")

 # Let's filter a list to get names only longer than 5 characters
 longer_names = list(filter(lambda x: len(x)>5, names))
 print(longer_names)

#___________ Designing Algorithms to solve problems
#2.py

''' What will we learn here?
1. What is "searching"? How do we implement the LINEAR search and BINARY search algorithms?

2. How do we analyze the above two algorithms? That means: how can we tell "how much time" each algorithm will take to run, given some "input work of size n".

LINEAR SEARCH

Let's say a data file contains a list of numbers. We want to know if some number x (say x = 5) is in the list, and if so, what is its position.

Because linear search is so "well-defined", Python has a built-in function that implements it.

```python
def search(x, list):
    if x in the list, return its position
    if x is not in the list, return -1
```

Python implements its built-in linear search as the "index" method for a list. But there is a small difference from our above definition of search. If x is not in the list, Python's "index" method raises an exception instead of returning -1.

Here is an example.

```
# When x (x = 5) is not in the list, we get an exception with Python's linear search

>>> somelist = [10, 20, 12, 17, 78, 99, 197, 23]
>>> somelist.index(5)
Traceback (most recent call last):
  File "<pyshell#4>", line 1, in <module>
    somelist.index(5)
ValueError: 5 is not in list
```

```
# But when 5 is in the list, "index" returns its position

>>> somelist = [10, 20, 12, 17, 5, 78, 99, 197, 23]
```
>>> somelist.index(5)
4

...

Let's implement our linear search algorithm. What do we have to do?
1. Traverse the list from left to right.
2. If we encounter the item x we are search for, return the position in
the list (i.e., the index)
3. If we reach the end of the list and have not found x, return -1
(because x is not in list).

def search0(x, numberList): # this search cheats and calls Python's
 built-in search # for an easy way out :)

 try:
 return numberList.index(x)

 except: # the index method raises an exception if x is not in the list
 return(-1)

Now let's implement the search from scratch.
def search(x, numberList):

 for j in range(len(numberList)): # walking down the list from left
to right

 if (x == numberList[j]):
 return (j) # Hey! we found x. So return it's index.

 return(-1) # we traversed the entire list and x was not in there.

IMPORTANT NOTE: If there are n items in the list, then in order to check
if x is in there # you have to check every list item. Because this takes "n comparisons" we
call this an # O(n) algorithm.

...

Let n be the size of the input to the algorithm. Let f(n) be the number of
comparisons (also
called the worst-case run time) of the algorithm.

If there exists a constant $c > 0$ such that

$$f(n) \leq c \times n \quad \text{for all } n \geq 0$$

then the algorithm is an $O(n)$ algorithm.

That expression says: the number of comparisons is capped from above (or bounded from above) by some (i.e., any satisfactory) constant times n, for all n that is non-negative.

...

What if we did something crazy and jumped through the list at random hoping to find
x quickly if it is in there?

We may get lucky and find it fast, but on average it will still be $O(n)$, and sometimes it
may take much longer.

Reason in this way. Say the list is of size n, and put x in the last position. Now with probability
$1/n$ you will hit x if you jump in randomly. But with probability $(n-1)/n$
you will hit one of
the other numbers in the list.

#This will repeat on every try, until you hit x.

#The number of tries to hit x is called a Geometric random variable (just as
if you were
tossing a coin that came up Heads with probability $1/n$, and Tails with probability $(n-1)/n$,
and you were counting the number of tries for it to come up Heads).

Since the parameter of this Geometric random variable is $1/n$, the average time to
find x is n. So it is still an $O(n)$ time algorithm on average, but its
worst-case time can
be much larger than the simple linear search. Why? You may have really bad luck
and keep hitting the non x numbers for a really long time.

But there is another problem. If x is not in the list, the algorithm might run forever.
There are different ways of handling this. On way is to stop after a certain number of
tries. Another way is to build a list of new positions that have been
encountered. If
we do this then we can make the algorithm not repeat it's search
positions. But now,
at the expense of more book-work (maintaining lists of already checked
positions;
generating random positions to check from the rest) we are slowly
converging on
exactly the linear search, except that we are searching in a random order.

So in both cases, we end up with an O(n) algorithm.

At this point we understand the linear search very well.

Can we do better than O(n). That is, can we beat the linear search?
YES! Provided the list is already sorted.

Binary Search
#3.py
We need the list to be sorted in order to run the binary search algorithm.

Example:

19 elements in this sorted list. We want to look for the number 3.

list: 1 3 4 7 9 11 21 27 30 31 35 39 41 52 56
 57 59 61 64
(middle of list is 10th element 31; but one to the left or right is also
okay -- approximately middle)

step1: jump to the middle of the list and check if that position holds x =
3.

step2: If not equal, is x small or larger? If smaller, the new list to
search is the sublist on the left
 If larger, the new list to
search is the sublist on the right

 In our case 3 is smaller than 31, so the new list we'll work with
is

 1 3 4 7 9 11 21 27 30

(middle element is 5th element 9; but off to the left/right by one is also
okay).
There are 9 elements in this list. Simply repeat Steps 1 and 2 until we either find 3 in the list or realize that we have reached a sublist of size 1 and that number is not 3.

Once again 3 is not equal to middle element (9), but 3 is smaller. So the new list to work on is:

```
1   3    4    7
```

Now there are 4 elements in the list (even number). In the previous two cases the list had an odd number of elements and so the middle element was easy to define. But which element will we use as the middle element now?

Convention: midpoint = (low + high) / / 2 (integer division; divide and truncate)

in our case: `(0 + 3) // 2 = 1`

(Note: this midpoint formula will work for both the odd n and even n cases, and it does not cause overflow and generate a bad index. It will not give the midpoint we used in the first two cases above, but it will always work, without worrying about odd and even sized lists)

But now when we compare 3 to list[1] we find an exact match, and return our answer, which is "position 1".

If 3 was not in the list, search would continue until we ended up with a sublist of size 1 where the element in the sublist was not 3.

```
#You can delete the print statements. We've included them so you can trace execution.

def binsearch (x, numberList):
```
```python
low = 0  # index of first number in list or sublist
high = len(numberList) - 1  # "     "

while low <= high:  # when low == high the sublist size is 1
    print(numberList[low:high+1], " low:", low, " high:", high)

    mid = (low + high) // 2  # get index of "middle" element in list

    print("mid = ", mid)

    if (x == numberList[mid]):  # is there a match?
        print("Found", x, " at index", mid);
        return mid  # if yes, return the index it was found in

    elif (x < numberList[mid]):  # should we search the left sublist?
        print("Search the left sublist")
        high = mid - 1  # if so, update high, leave low the same

    else:
        print("Search the right sublist")
        low = mid + 1  # else we must search the right sublist

    print("Not in list!"))

    return (-1)  # we did not return mid in the loop; if we reached here it means

size 1 with no match. Hence # that the loop ended at a sublist of

binsearch failed to find x # we must return -1 to show that the
```
def main():

 nlist = [1, 3, 4, 7, 9, 11, 21, 27, 30, 31, 35, 39, 41, 52, 56, 57, 59, 61, 64]

 binsearch(3, nlist)

__________ Analysis ________________________________

How do we count the number of comparisons made by binsearch() before it
either returns
a position for x (success) or returns -1 (failure) ?

...

Let's make things simple by assuming the size of the list is 2^n (2 to the
power n).

To make it simpler still, let n = 4; the list size is now 16. Let's also
assume x is not in list.

positions: [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15] # note, the numbers are POSITIONS!

pass 1: low = 0, high = 15

 mid = 7. After comparing x to list[7], if there is no match, we
 must go to the

 left or right sublist, depending on whether x < list[7] or not.

 Suppose x > list[7]. We must now look at right sublist.

positions: [8 9 10 11 12 13 14 15]

pass 2: low = 8, high = 15

 mid = 11. After comparing x to list[11] say we go to
right sublist.

positions: [12 13 14 15]

pass 3: low = 12, high = 15
mid = 13. After comparing x to list[13]...... say we go to right sublist again.

positions: [14 15]

pass 4: low = 14, high = 15

mid = 14. After comparing x to list [14] ... say we go to right sublist again

positions: [15]

pass 5: low = 15, high = 15

mid = 15. On comparing x to list[15] we find that x is not in list.

Analysis: list of size 2^4 required 4 comparisons (actually 5, but we can ignore that last step. Why? Because 2^n for very large n requires n comparisons, and 1 extra step does not matter since n is large).

idea: list of size 2^n requires n comparisons.

How many comparisons does a list of size n need?

- size 2^n -------------> needs $\log_2(2^n) = n$ comparisons
- size n -------------> needs $\log_2(n)$ comparisons

Hence: Binary search is a $O(\log(n))$ algorithm. It is much faster than the $O(n)$ required by linear search. [But remember that binary search had an advantage --- the list was already sorted!]

```