V. Rego, Sept 3, 2015

Week 2, Examples 2

#___

#1.py
#GraphWin is a class. Think of it as code that you can use to create
GraphWin objects

#What is a GraphWin object? It is a particular instantiation of the class.
For example if there was a class (i.e., code) to create student objects,
you can use this class code to instantiate students Bill, Bob, and Tom
Now Bill, Bob and Tom would be student objects.

The GraphWin object is a graphics window. You acquire it from the
graphics.py library, just like you got math.sqrt from math.py

The Graphwin class has variables, and it uses those variables to give
you different kinds of windows.

def wait():
 dummyvar = input(" ");

from graphics import * #instead of just import, in which case you call
#functions using "graphics.GraphWin", like
math.sqrt #using this kind of import means no need to say
#"graphics." each time. Just GraphWin will do.

def main():
 wait()
 w1 = GraphWin("Small",200,200) # (200,200) is default size
 wait()
 w2 = GraphWin("Medium",400,400)
 wait()
 w3 = GraphWin("Large",800,800)
 wait()
 w1.close() #notice that w1,w2,w3 are objects and they each have
 methods
 w2.close() #that can work with them. These "methods" are functions
 you
 w3.close() #call from the GraphWin class
wait()
for i in range(1,100,1):

 w = GraphWin("Oops! Yet another graphics window",10*i,10*i)

 # Note that w keeps getting reassigned to point to a new object as
 # the loop index changes

 #and note that we did not call the w.close() function to close windows

 # this was just to show you the windows

 # its bad programming practice to reassign w without closing the old w

 # w = GraphWin("Window 1",10,10)
 # now do a w.close()
 # or else when, without closing, you reassign variable w
 # w = GraphWin("Window 2",20,20)

 # you have lost the way to close the 10x10 window because w now
 # refers to the 20x20 window

 # so always be careful of your variables and losing information

#2.py

#Lets do the window example again, but close each window before
#opening a new one. So you will not see a "cascade" of windows.

from graphics import * # instead of just import, in which case you call
 #functions using "graphics.GraphWin", like
math.sqrt # using this kind of import means no need to say
 #"graphics." each time. Just GraphWin will do.

def main():

 for i in range(1,100,1):

 w = GraphWin("Oops! Yet another graphics window",10*i,10*i)

 w.close() # close the window before changing w in next loop iteration

#3.py
#graphics.py gives you other classes besides Graphwin

#you can access classes to give you circles, lines, rectangle, polygons etc #inside any graphics window

def wait():
 dummy = input(" ")

from graphics import * #get access to all of graphics.py's functions
import time

def main():
 wait()
 #first get a window

w = GraphWin("Example Window",800,800) #(0,0) is at top left corner
 #(799,799) is at bottom-right corner
 # x is horizontal, y is vertical
 # in (x,y)

 wait()
 #draw a circle

 center = Point(100,100)
 #place a point at location (100,100)
 c = Circle(center, 90)
 c.draw(w)
 #call method to make circle in window w

 wait()
 lec = Point(65,60)
 #left eye center

 le = Circle(lec,20)
 le.draw(w)

 wait()
 rec = Point(135,60)
 #using symmetry about (100,100) center
 #for right eye

 re = Circle(rec,20)
 re.draw(w)

 wait()

 #put a horizontal line in middle of right eye

 droopy = Line(Point(115,60),Point(155,60))
 #now the right eye looks
droopy

droopy.draw(w)

now you can turn that eye into an ice-cream cone :) by drawing
horizontal lines

wait()

for i in range(0,96,1):
 droopy.setFill("black")
 droopy.setWidth(1)
 droopy = Line(Point(115+(i/10.0),60+i),Point(155-(i/10.0),60+i))
 droopy.draw(w)

 wait()

#---------------------
Now a rectangle

r = Rectangle(Point(250,250), Point(600,450))
r.draw(w)

and some lines

wait()

vert = Line(Point(450,250),Point(450,450))
vert.draw(w)

wait()

horz = Line(Point(250,340),Point(600,340))
horz.draw(w)

wait()

#---------------------
Now a triangle, via the polygon class, on the left hand side of page

bottom

t1 = Polygon(Point(225,550),Point(25,750),Point(425,750))
t1.draw(w)

if you say t2 = t1, you simply create a new name t2 for an object that is
already called t1, and you can access the object via either name.

BUT if you wanted to create a duplicate object instead, say another such
triangle, then you must CLONE it using the "clone()" method

wait()
How to copy any object, in this case the triangle

t2 = t1.clone() # now a COPY of t1 is made, and t2 is not pointing to t1

the copy is ready and sits atop the old object; we need to move t

lets move it some distance to the right and a bit up

t2.move(350,-75) # 350 units to right, and 75 units up (hence minus)
t2.draw(w)

label each triangle, so we can tell from the pic

wait()

t1text = Text(Point(230,650),"t1 is the original")
t1text.setSize(18)
t1text.draw(w)

wait()

t2text = Text(Point(580,625),"t2 is the clone")
t2text.setSize(18)
t2text.draw(w)

#------------------

You can draw and undraw things; let's try with a line

l = Line(Point(220,150),Point(450,10))
l.draw(w)

for i in range(1,600,+1):
 time.sleep(0.05) # function from time library; it puts the program
to sleep for a bit
 l.undraw()
 l = Line(Point(220+i,150+i),Point(450+i,10+i)) # draw new line, bit
lower
 l.setFill("blue")
l.draw(w)

Because we draw a line, let it stay drawn for 0.05 secs
and then "undraw" (erase) it and draw the same line a little lower down

your brain/eyes fool you into thinking the original line is moving ;)

__4.py

Prof. R had a VERY scary dream where he was attacked by a man with a
horrid
red face and blue nose. The police heard about it and wanted a
description.
He decided to use the graphics lib with objects and colors to accurately
describe what he saw :)

from graphics import * # import all the functions, no need to type x.func
now

def main():

 w = GraphWin("Gregory Peck", 800, 800) # 800x800 box

 # Remember the top left corner is (0,0), i.e., x = 0, y = 0, and
 # the bottom right corner is (799,799), i.e., x = 799, y = 799.

 # As x is increased you move to the right
 # As y is increased you move down

 cen = Point(400,400) # this is the big red circle for face
cir = Circle(cen,350)
cir.setFill("red")
cir.draw(w)

 leye_cen = Point(250,350) # yellow part of left eye
leye = Circle(leye_cen,45)
leye.setFill("yellow")
leye.draw(w)

 leyeball_cen = Point(250,350) # left eyeball (black)
leyeball = Circle(leye_cen,20)
leyeball.setFill("black")
leyeball.draw(w)

 reye_cen = Point(550,325) # big black circle for right eye
reye = Circle(reye_cen,100)
reye.setFill("black")
reye.draw(w)

 # The next rectangle covers the top of the right eye. By making it red,
 # it blends with face colour and creates a flat eyepatch top. Set line
 # width to 0 so that the rectangle border cannot be seen

 rect = Rectangle(Point(425,225), Point(675,295))
rect.setFill("red") # set colour to "blue" to see this rectangle
rect.setWidth(0) # don't want rectangle to show boundary
rect.draw(w)
```python
lear = Oval(Point(120, 75), Point(200, 250))  # left ear
lear.setFill("red")
lear.setWidth(0)
lear.draw(w)

rear = Oval(Point(720, 85), Point(640, 250))  # right ear
rear.setFill("red")
rear.setWidth(0)
rear.draw(w)

line1 = Line(Point(120, 175), Point(460, 305))  # eye-patch cord to left ear
line1.setWidth(6)
line1.draw(w)

line2 = Line(Point(720, 175), Point(640, 305))  # eye-patch cord to right ear
line2.setWidth(6)
line2.draw(w)

nose = Polygon(Point(400, 375), Point(340, 450), Point(460, 450))  # simple nose
nose.setFill("blue")
nose.draw(w)

mouth = Oval(Point(190, 550), Point(610, 565))  # thin oval mouth
mouth.setFill("black")
mouth.draw(w)

tooth1 = Rectangle(Point(405, 550), Point(440, 595))  # left (bigger) tooth
  tooth1.setFill("white")
tooth1.draw(w)

tooth2 = Rectangle(Point(445, 550), Point(470, 580))  # right tooth
  tooth2.setFill("white")
tooth2.draw(w)
```

#5.py

#IMPORTANT: instead of counting points from the top left corner in a graph window, python makes things easier by letting you define your own coordinate system, as large or as small as you want, inside the graphics window!

#Suppose a mutual-fund manager from Snooty & Co. wants to report his annual profit from his top tech investments to his clients:

Here is the data
$5.2M GOOG
$3.1M YHOO

$4.5M INTC
$7.7M AAPL

$3.8M QCOM
$1.75 ADBE

and we want to plot these sizes in a bar chart, in increasing order.

def wait(): #this is only used to pause in class
dummyvar = input(" ")

def main():
 wait()
 w = GraphWin("Annual Tech. Investment Profits", 800, 800)
 w.setCoords(0.0, 0.0, 14.0, 14.0) # IMPORTANT: we redefine the coord. system!
 xmin = 2.0 # this is the (0,0)
 ymin = 3.0 # corner of the graph inside the w window
 xmax = 12.0 # this is the right hand
 ymax = 14.0 # top corner of the graph inside the w window
 wait()

 horzline = Line(Point(xmin, ymin), Point(xmax, ymin))
 horzline.setWidth(3)
 horzline.draw(w)

 wait()

 # First the Heading under the chart
 tag = Text(Point(6.0, 1), "Snooty and Co. Annual Tech Profits")
 tag.setStyle("bold")
 tag.setSize(20)
 tag.setTextColor("green")
 tag.draw(w)

 wait()

 # We have 14-2 = 12 units to work with on the x-axis to place tall bars
#skip the first 0.5 units, and then
repeat this: place a tall bar 1 unit wide and skip 0.5 units
6 times

deb = Rectangle(Point(x, y), Point(x+1, y + 1.75))
deb.setFill("blue")
deb.draw(w)
wait()
t1 = Text(Point(x+0.5, y-0.5), "ADBE")
t1.setSize(20)
t1.setStyle("bold")
t1.setTextColor("blue")
t1.draw(w)
wait()
tt1 = Text(Point(x+0.5, y+1.75+0.5), "$1.75M")
tt1.setSize(15)
tt1.setTextColor("blue")
tt1.draw(w)

#------ YHOO
x = x + 1.5

yhoo = Rectangle(Point(x, y), Point(x+1, y + 3.1))
yhoo.setFill("red")
yhoo.draw(w)
wait()
t2 = Text(Point(x+0.5, y-0.5), "YHOO")
t2.setSize(20)
t2.setStyle("bold")
t2.setTextColor("red")
t2.draw(w)
wait()
tt1 = Text(Point(x+0.5, y+3.10+0.5), "$3.10M")
tt1.setSize(15)
tt1.setTextColor("red")
tt1.draw(w)

For homework, draw the other 4. Cut and paste from YHOO, and change # the numbers and colors accordingly for each