[Zelle/Lambert/Ramanujan/Rego]

V. Rego, Dec 3, 2015

Week 15, Examples 2

```
#__________________ Recursive Functions___________________________________
#1.py

# So far we have used functions that called other functions, but never did call themselves.

# A Recursive function is a function that calls itself. But if it calls itself, then when does it stop calling itself and start to return (i.e., it has to return through the whole sequence of calls it makes to itself.

# To step calling itself forever, a recursive function needs a statement called a BASE CASE.
# The BASE CASE tells it whether to stop (and start the chain of returns) or continue with another call to itself.

# A function that uses a loop to do some computation (i.e., it does not call itself) is an ITERATIVE function (i.e., it is non-recursive).

# Let's take a look at an iterative function --- the kind we already know.

'''Example: We will write an iterative function to print all the integers starting at integer low and stopping at integer high.''

def iRange(low, high):
    # iterative function to print range of integers
    ''' iteratively print all integers, from low to high.''

        while (low <= high):
            # the loop will stop as soon as j increases past high
            print(low)
            low = low + 1

    ''' Note these two points:

1. local variable "low" keeps getting incremented; local variable "high" does not change at all
2. loop continues as long as low <= high

```
Now let's try to do this by making the function call itself. Remember that it must have a BASE CASE so that it can stop, and start the sequence of returns.

def rRange(low, high):
 # recursive function to print range of integers
 ''' print all integers, from low to high.''
 if (low <= high):
 # the loop condition from iRange becomes our base case; "low" keeps
 # getting incremented in each recursive call; finally this test fails
 # and the recursive calling stops
 print(low)
 rRange(low+1, high) #notice how we enter the recursive call with a "smaller" problem

Note: Both iRange and rRange go through the exact same sequence of calls and produce
the same values s output

def main():
 iRange(11,22);
 print("\n\n")
 rRange(11,22)

main()
Observe how the recursion step replaces the original problem \(sum(low, high) \) with the subproblem
\(low + sum(low + 1, high) \). This is the key idea in recursion, but do not forget the base step.

```python
def sum(low, high):
    ''' Returns the sum of all integers from low to high.'''

    if (low > high):  # notice how this base case test gives us a way to stop recursing
        return 0

    else:
        return (low + sum(low + 1, high))  # farming off a subproblem to next call
```

```
...  
Using recursion involves the "divide-and-conquer" strategy.

You are given a problem in terms of \( n \)

Try to reduce that problem to a combination of a partial solution and the same problem in terms of a smaller \( n \) (typically \( n-1 \), or perhaps \( n/2 \)).

In the above example we added "low" to the result of a smaller problem with one less number in the sum.

Instead of going from low to high, the smaller subproblem went from \( (low + 1) \) to high.

...  
```

__________________ TRACING a recursive function ____________________
#3.py

Let's trace (i.e., see how the calls are sequenced and how the returns are sequenced) a recursive function call

To help see the pattern we must do some pretty-printing

Every time we make a recursive call we will print the arguments to the call. But also, every time
we go deeper into the recursion, we will move the printing to the right, so the pattern is clear.
When the base case is hit and the recursive function starts to return, we will do the same
printing but in reverse, but instead of printing the arguments, we will print the result that
each particular call returns until we return to the first call which gives the final result.

def sum (low, high, margin):
 #add all integers between low and high
 ''' Returns a sum of the numbers from low to high.
 Print the recursive call parameters and the return results in such a way that the
 recursive pattern is clear.''

 blanks = " " * margin # margin tells us how many spaces to the right or left we must print

 print(blanks, low, high) # print margin spaces, then print arguments to first call

 if (low > high): # we have reached the bottom of the recursive calls if this is true
 print (blanks, 0) # sum cannot compute anything if low > high. So print 0.

 return 0 # since nothing to compute, there is nothing to return. Return 0.
 else:

 result = low + sum (low + 1, high, margin + 4) # please study this recursion

 # low + new subproblem

 # printing moves 4 spaces to the right

 print(blanks, result)

 return (result)

 # Hint: tracing in this way can help you debug recursion because the pattern will not
 # confuse you. Make sure you understand that the prints going to the right make up the
 # sequence of recursive calls. The prints going to the left make up the returns up this chain
 # of calls.
def main():
 sum(1, 7, 0)

#_____ Mapping a math recursion to a recursive Python
function____________________

#4.py

The famous Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13,
F(1) = 1, F(2) = 1, F(3) = 2, F(4) = 3, F(5) = 5, F(6) = 8, F(7) = 13,

The first two numbers are 1, 1
from then on, the next number is the sum of the previous two.

Let's write an iterative version of this function first

def iFib(n): # returns the nth Fib number in the sequence
 if (n == 1):
 return 1
 elif (n == 2):
 return 1
 else:
 previous = 1 # save the previous and the
 current = 1 # current fib numbers

 index = 3
 while (index <= n):
 next = previous + current # now start to add the
 previous = current
 current = next # update the current
 index = index + 1

 return next

''' Now let's look at the math (recursive) definition of Fibonacci

F(n) = 1 , when n = 1 or n = 2
F(n) = F(n-1) + F(n-2) when n > 2

and observe how it easily maps into recursive Python code.''

def rFib(n): # recursive definition of Fibonacci, using the math recursion
 if (n < 3):
 return 1
 else:
 return (rFib(n-1) + rFib(n-2))

def main():
 print("Iteration \n")
 for j in range (1,12):
 print(iFib(j))
 print ("\n\n")
 print("Recursion \n")
 for j in range (1,12):
 print(rFib(j))
main()

#___________________ recursive factorials _________________________________

#5.py

We know that n! = n(n-1)(n-2)(n-3)......... 3.2.1. Let's compute it recursively.

def rFact(n): # returns n!
 if (n ==1):
 return 1
 else:
 return(n*rFact(n-1))

Home-work: write the iterative version to check results
n! gives you the number of ways of permuting n objects.
What if you wanted to (do combinations) select objects. How many ways are there of
selecting k objects from n objects? This is \(nCk \) or \((n,k) \) and
the answer is : \(n! / (k! \times (n-k)!) \)
so you see that to compute this, you need 3 factorials.

def Comb(n,k):
 # number of ways of choosing k objects from n objects

denom = rFact(k) * rFact(n-k)
num = rFact(n)
return ((num//denom))

Now supposing you had a string of n arbitrary objects let's say 'abcdefg'. How
can we list out all arrangements of k objects at a time?

def combinations(string, k):
 # want list of all k things from string

 outlist = []
 # start with empty list and
 build it recursively

 for j in range (len(string)):
 if (k ==1):
 outlist.append(string[j])
 # if there's only one object, put it in the list

 # Next slice through the smaller sublist recursively, and
 # concatenate the
 # new elemen to each sub arrangement

 for element in combinations(string[j+1:], k-1):
 outlist.append(string[j] + element)

 return outlist

#HW: Also read the example on anagrams (page 437) it is similar.

def main():
print("Factorial 5 = ", rFact(5))
print("Factorial 10 = ", rFact(10))

print("Factorial 27 = ", rFact(27))
print(" ")

print("Number of ways of choosing two objects from ten objects = ", Comb(10, 2))
print(" ")

print("Combinations: ", combinations("ABCDEFGH", 3))

main()

#_____________________ Recursive Binary Search_____________________________
#6.py

When you trace the possible paths a binary search can take, you get a tree.

It starts with a single node with n elements. After one step you are down by one level,
with two nodes, each having roughly n/2 elements. As in the first step, when you go down
further by one level, each node again splits into two nodes with roughly n/4 items each.
In this way, in log(n) steps (log to the base 2) we arrive at n nodes, each containing
a single list element, and by this step the search problem has been solved.

Whenever you see a problem that exhibits this tree-pattern you know you have a
candidate for recursion.

def rBinSearch(x, nlist, low, high):
 # search for x from nlist[low] to nlist[high]

 if (low > high):
 return -1

 mid = (low + high) // 2

 item = nlist[mid]

 # is this x? or is it smaller? or is it larger?
if (item == x):
 return mid # found it!

elif (x < item):
 # if x is in nlist, it's in the left sublist
 return rBinSearch(x, nlist, low, mid -1)

else: # or since its greater than item, it's in the right sublist
 return rBinSearch(x, nlist, mid + 1, high)

def main():

 nlist = [1, 5, 7, 19, 21, 27, 31, 45, 56, 63, 66, 71, 73, 79, 84, 85, 89, 93, 97, 99]

 index = rBinSearch(7, nlist, 0, 19)

 if (index > 0):
 print("Found the number in location ", index)

main()

#________________ Computing things with exponents very quickly

#7.py

In your lab you will do this with matrices. The idea is the same. Here we will use numbers. In
lab you replace the numbers by matrices. No conceptual difference when taking powers.

Idea: you want to compute x raised to the power 10.

One way is to multiply it out 10 times like this

def power(x, n):
 # x raised to the power n

 result = 1

 for i in range(n):
 result = result * x # if the power is n, you do n multiplications in this approach
Faster way: \(x^5 \times x^5 = x^{10}\), so we can get \(x^{10}\) with one multiplication if we had \(x^5\)
\(x^4 = x^2 \times x^2\), so things are looking good
first get \(x^2\) which is \(x\times x\)
then get \(x^4\) which is \(x^2 \times x^2\)
then get \(x^5\) which is \(x^4 \times x\) (so far we have done
3 multiplications in total)
finally get \(x^{10}\) which is \(x^5 \times x^5\) -------> presto! in
4 multiplications we have the answer

This is a lot faster than doing 10 multiplications to
get \(x^{10}\)

The only (small) problem is that the power can be odd or even. See the
simple formula
at the bottom of page 438 in your text.

def rpower(x, n):
 # \(c\) raised to the power \(n\), recursively, fast
 if (n == 0):
 return 1
 else:
 factor = rpower(x, n//2) # get half the power recursively
 if (n % 2 == 0):
 return (factor*factor) # even number, no extra
 multiplication needed
 else:
 return(factor*factor*x) # need an extra multiplication
 because \(n\) is odd

Iterative and Recursive string
reversal
#8.py

Let's write a simple iterative function that takes in a string, reverses
it and returns
the reverse string. ** It uses a new string to do this. **

def iReverse_with_new(s):
 # \(s\) is the input string
new = ""

j = len(s) - 1 # this is the position of last character in string

while (j >= 0):
 new = new + s[j] # built the new string starting from last character, backwards
 j = j - 1

return new

Now let's try it recursively

def rReverse(s):
 # Idea: if there is only one character in the string, return it; there is no work to do.
 # suppose the length of the string is n
 # otherwise, put the first character in the n-th position, and recursively call the
 # function to work on the first (n-1) characters

 if (len(s) <= 1): # if string has only one element or is empty
 return s
 else:
 return (rReverse(s[1: :]) + s[0]) # put first char in last position and call rReverse on the
 # rest of the string, recursively

def main():

 print("iReverse_with_new")
 print(" ")
 print(iReverse_with_new("This is a small string"))
 print(iReverse_with_new("0123456789"))
 print(iReverse_with_new(" "))
 print(iReverse_with_new("0 1"))
 print(iReverse_with_new(""))

 print("\nrReverse")
 print(" ")
 print(rReverse("This is a small string"))
 print(rReverse("0123456789"))
 print(rReverse(" "))
 print(rReverse("0 1"))
print(rReverse(""))

main()