

CS 50011: Introduction to Systems II

Prof. Jeff Turkstra
Computer Science Department

Purdue University

1

Copyright 2017

Copyright © 2017 by Gustavo Rodriguez-Rivera. Permission to make digital
or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and full citation on
the first page. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or fee. Request
permission to publish from grr@cs.purdue.edu.

2

Sockets and Ports

 A port defines an end-point (application) in the
machine itself

 There are well-known ports:
 HTTP Port 80
 SSH Port 22
 FTP Port 21

 If you are building an application that will be deployed
globally, you may request your own port number.

 A socket is a file descriptor that can be used to receive
incoming connections or to read/write data to a client or
server.

3

Sockets and Ports

 A TCP connection is defined uniquely in the entire Internet by four
values:

<src-ip-addr, src-port, dest-ip-addr, dest-port>
 Example: A runs an HTTP server in port 80
 B connects to A’s HTTP server using source port 5000

 The connection is <IB, 5000, IA, 80>
 C connects also to A’s HTTP server using src port 8000

 The connection is <IC, 8000, IA, 80>
 Another browser in B using port 6000 connects to A

 The connection is <IB, 6000, IA, 80>
 Another browser in C using port 5000 connects to A

 The connection is <IC, 5000, IA, 80>
 The OS uses this 4 values to know what data corresponds to what

application/socket.

4

Sockets API

They were introduced by UNIX BSD (Berkeley
Standard Distribution).
They provide a standard API for TCP/IP.
A program that uses sockets can be easily ported
to other OS’s that implement sockets: Example:
Windows.
Sockets were designed general enough to be used
for other platforms besides TCP/IP. That also
makes sockets more difficult to use.

5

Sockets API

Sockets offer:
 Stream interface for TCP.

Read/Write is similar to writing to a file or pipe.
 Message based interface for UDP

Communication is done using messages.

The first applications were written using sockets:
FTP, mail, finger, DNS etc.
Sockets are still used for applications where direct
control of the network is required.
Communication is programmed as a conversation
between client and server mostly using ASCII
Text. 6

Programming With Sockets

Client Side
 int cs =socket(PF_INET, SOCK_STREAM, proto)

…

Connect(cs, addr, sizeof(addr))

…

Write(cs, buf, len)

Read(cs, buf, len);

Close(cs)

See:
 Lab 03 client.cpp

7

Programming With Sockets

Server Side
…

int masterSocket = socket(PF_INET, SOCK_STREAM, 0);
…
int err = setsockopt(masterSocket, SOL_SOCKET, SO_REUSEADDR, (char *) &optval,

sizeof(int));
…
int error = bind(masterSocket, (struct sockaddr *)&serverIPAddress, sizeof(serverIPAddress));
…
error = listen(masterSocket, QueueLength);
…
while (1) {
…
 int slaveSocket = accept(masterSocket,
 (struct sockaddr*)&clientIPAddress, (socklen_t*)&alen);
 read(slaveSocket, buf, len);
 write(slaveSocket, buf, len);
 close(slaveSocket);
}

• See: http://www.cs.purdue.edu/homes/cs354/lab5-http-server/lab5-src/daytime-server.cc

8

Client for Daytime Server

client.c

9

Daytime Server
daytime-server.c

10

Types of Server Concurrency

Iterative Server

Fork Process After Request

Create New Thread After Request

Pool of Threads

Pool of Processes

11

Iterative Server

void iterativeServer(int masterSocket) {
while (1) {
 int slaveSocket =accept(masterSocket,

 &sockInfo, &alen);
 if (slaveSocket >= 0) {
dispatchHTTP(slaveSocket);
 }

 }
}
Note: We assume that dispatchHTTP itself
closes slaveSocket.

12

Fork Process After Request

void forkServer(int masterSocket) {
while (1) {

 int slaveSocket = accept(masterSocket,
 &sockInfo, &alen);

 if (slaveSocket >= 0) {
 int ret = fork();

` if (ret == 0) {
 dispatchHTTP(slaveSocket);
 exit(0);
 }
 close(slaveSocket);
 }
 }
}

13

Create Thread After Request
void createThreadForEachRequest(int masterSocket)

{

 while (1) {

 int slaveSocket = accept(masterSocket, &sockInfo, &alen);

 if (slaveSocket >= 0) {

 // When the thread ends resources are recycled

 pthread_attr_t attr;

 pthread_attr_init(&attr);

 pthread_attr_setdetachstate(&attr,

 PTHREAD_CREATE_DETACHED);

 pthread_create(&thread, &attr,

 dispatchHTTP, (void *) slaveSocket);

 }

 }

} 14

Pool of Threads

void poolOfThreads(int masterSocket) {
for (int i=0; i<4; i++) {

 pthread_create(&thread[i], NULL, loopthread,
 masterSocket);
 }
 loopthread (masterSocket);
}

void *loopthread (int masterSocket) {
 while (1) {
 int slaveSocket = accept(masterSocket,
 &sockInfo, &alen);
 if (slaveSocket >= 0) {
 dispatchHTTP(slaveSocket);
 }
 }
}

15

Pool of Processes

void poolOfProcesses(int masterSocket) {
for (int i=0; i<4; i++) {

 int pid = fork();
 if (pid ==0) {
 loopthread (masterSocket);
 }
 }
 loopthread (masterSocket);
}

void *loopthread (int masterSocket) {
 while (1) {
 int slaveSocket = accept(masterSocket,
 &sockInfo, &alen);
 if (slaveSocket >= 0) {
 dispatchHTTP(slaveSocket);
 }
 }
}

16

Notes:

In Pool of Threads and Pool of processes, sometimes the
OS does not allow multiple threads/processes to call
accept() on the same masterSocket.
In other cases it allows it but with some overhead.
To get around it, you can add a mutex_lock/mutex_unlock
around the accept call.
mutex_lock(&mutex);
int slaveSocket = accept(masterSocket,
 &sockInfo, 0);
mutex_unlock(&mutex);

In the pool of processes, the mutex will have to be created
in shared memory.

17

Questions?

18

