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Sockets and Ports

 A port defines an end-point (application) in the 
machine itself

 There are well-known ports:
 HTTP Port 80
 SSH    Port 22
 FTP     Port 21

 If you are building an application that will be deployed 
globally, you may request your own port number.

 A socket is a file descriptor that can be used to receive 
incoming connections or to read/write data to a client or 
server. 
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Sockets and Ports

 A TCP connection is defined uniquely in the entire Internet by four 
values: 

<src-ip-addr, src-port, dest-ip-addr, dest-port> 
 Example: A runs an HTTP server in port 80
 B connects to A’s HTTP server using source port 5000

 The connection is <IB, 5000, IA, 80>
 C connects also to A’s HTTP server using src port 8000

 The connection is <IC, 8000, IA, 80>
 Another browser in B using port 6000 connects to A

 The connection is <IB, 6000, IA, 80>
 Another browser in C using port 5000 connects to A

 The connection is <IC, 5000, IA, 80>
 The OS uses this 4 values to know what data corresponds to what 

application/socket.
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Sockets API

They were introduced by UNIX BSD (Berkeley 
Standard Distribution).
They provide a standard API for TCP/IP.
A program that uses sockets can be easily ported 
to other OS’s that implement sockets: Example: 
Windows.
Sockets were designed general enough to be used 
for other platforms besides TCP/IP. That also 
makes sockets more difficult to use.
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Sockets API

Sockets offer:
 Stream interface for TCP. 

Read/Write is similar to writing to a file or pipe.
 Message based interface for UDP

Communication is done using messages.

The first applications were written using sockets: 
FTP, mail, finger, DNS etc.
Sockets are still used for applications where direct 
control of the network is required.
Communication is programmed as a conversation 
between client and server mostly using ASCII 
Text. 6



  

 

Programming With Sockets

Client Side
 int cs =socket(PF_INET, SOCK_STREAM, proto)

…

Connect(cs, addr, sizeof(addr))

…

Write(cs, buf, len)

Read(cs, buf, len);

Close(cs)

See: 
 Lab 03 client.cpp
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Programming With Sockets

Server Side
…

int masterSocket = socket(PF_INET, SOCK_STREAM, 0); 
…
int err = setsockopt(masterSocket, SOL_SOCKET, SO_REUSEADDR, (char *) &optval, 

sizeof( int ) ); 
…
int error = bind( masterSocket, (struct sockaddr *)&serverIPAddress, sizeof(serverIPAddress) ); 
…
error = listen( masterSocket, QueueLength); 
…
while ( 1 ) {
… 
    int slaveSocket = accept( masterSocket,
        (struct sockaddr*)&clientIPAddress, (socklen_t*)&alen); 
    read(slaveSocket, buf, len);
    write(slaveSocket, buf, len);
   close(slaveSocket);
}

• See: http://www.cs.purdue.edu/homes/cs354/lab5-http-server/lab5-src/daytime-server.cc
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Client for Daytime Server

client.c
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Daytime Server
daytime-server.c
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Types of Server Concurrency

Iterative Server

Fork Process After Request

Create New Thread After Request

Pool of Threads

Pool of Processes
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Iterative Server

void iterativeServer( int masterSocket) {
while (1) {
  int slaveSocket =accept(masterSocket,

 &sockInfo, &alen); 
  if (slaveSocket >= 0) { 
dispatchHTTP(slaveSocket); 
  } 

  } 
}
Note: We assume that dispatchHTTP itself 
closes slaveSocket.
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Fork Process After Request

void forkServer( int masterSocket) {
while (1) { 

      int slaveSocket = accept(masterSocket,  
                         &sockInfo, &alen); 

   if (slaveSocket >= 0) { 
     int ret = fork(); 

`      if (ret == 0) { 
            dispatchHTTP(slaveSocket); 
            exit(0);
       } 
       close(slaveSocket);
     } 
  } 
}
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Create Thread After Request
void createThreadForEachRequest(int masterSocket)

{

  while (1) {

    int slaveSocket = accept(masterSocket, &sockInfo, &alen); 

    if (slaveSocket >= 0) {

      // When the thread ends resources are recycled

      pthread_attr_t attr;    

      pthread_attr_init(&attr);

      pthread_attr_setdetachstate(&attr,

                    PTHREAD_CREATE_DETACHED);   

      pthread_create(&thread, &attr, 

             dispatchHTTP, (void *) slaveSocket); 

    } 

  }
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Pool of Threads

void poolOfThreads( int masterSocket ) {
for (int i=0; i<4; i++) {   

    pthread_create(&thread[i], NULL, loopthread, 
                   masterSocket);
   }
   loopthread (masterSocket); 
}

void *loopthread (int masterSocket) { 
  while (1) {
    int slaveSocket = accept(masterSocket, 
                     &sockInfo, &alen); 
    if (slaveSocket >= 0) { 
      dispatchHTTP(slaveSocket); 
    } 
  } 
} 
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Pool of Processes

void poolOfProcesses( int masterSocket ) {
for (int i=0; i<4; i++) {   

     int pid = fork();
     if (pid ==0) {
       loopthread (masterSocket);
     }
   }
   loopthread (masterSocket); 
}

void *loopthread (int masterSocket) { 
  while (1) {
    int slaveSocket = accept(masterSocket, 
                     &sockInfo, &alen); 
    if (slaveSocket >= 0) { 
      dispatchHTTP(slaveSocket); 
    } 
  } 
} 
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Notes:

In Pool of Threads and Pool of processes, sometimes the 
OS does not allow multiple threads/processes to call 
accept() on the same masterSocket.
In other cases it allows it but with some overhead.
To get around it, you can add a mutex_lock/mutex_unlock 
around the accept call.
mutex_lock(&mutex);
int slaveSocket = accept(masterSocket, 
                     &sockInfo, 0);
mutex_unlock(&mutex);

In the pool of processes, the mutex will have to be created 
in shared memory.
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Questions?
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