
© 2017 Dr. Jeffrey A. Turkstra 1

CS 50011: Introduction to Systems IICS 50011: Introduction to Systems II

Lecture 6: Memory Management and Lecture 6: Memory Management and
Virtual MemoryVirtual Memory

Prof. Jeff TurkstraProf. Jeff Turkstra

© 2017 Dr. Jeffrey A. Turkstra 2

Lecture 07

 Virtual memory management
 Based on slides by Prof. George

Adams III

© 2017 Dr. Jeffrey A. Turkstra 3

Typical memory specs

 Use of hard disk should be carefully
managed for performance reasons

Level Size in bytes Typ. access time (ns)

Registers (64) 512 0.25

DRAM (4 GB) 4,294,967,296 60.00

Hard disk (1 TB) 1,000,000,000,000 10,000,000.00

© 2017 Dr. Jeffrey A. Turkstra 4

 “… a system has been devised to
make the core and drum*
combination appear to the
programmer as a single level store,
the requisite transfers taking place
automatically.”
 Kilburn et al., “One-level storage

systems”, 1962

© 2017 Dr. Jeffrey A. Turkstra 5

Motivation

 Efficient and safe (correct) sharing of
memory among multiple programs

 Permit caching of hard drive data in
main memory

 Allow programs to run even if
footprint is larger than available main
memory

 Sometimes motivations change as
technology changes

© 2017 Dr. Jeffrey A. Turkstra 6

Memory management

 Suppose we have:
 Internet Exploder (100MB)
 Micro$oft Word (100MB)
 Yahoo Messenger (30MB)
 Operating System (200MB)

 Computer has 256MB of RAM
 Have to quit programs before starting

others
 Virtual memory allows us to load/unload

portions as needed

© 2017 Dr. Jeffrey A. Turkstra 7

Programmer burden

 Without virtual memory, it’s the
programmer’s job to make programs
fit
 Divide into mutually exclusive chunks
 Dynamically load/unload chunks as

needed
 Same for libraries

 Sounds like fun. Not.

© 2017 Dr. Jeffrey A. Turkstra 8

Isolation

 Virtual memory limits sharing to
explicit cases

 How? Every program has its own
address space

 Virtual memory translates virtual
addresses to physical addresses

 Also enforces protection

© 2017 Dr. Jeffrey A. Turkstra 9

More efficient memory
utilization

 Keep in RAM only the portion of
address space currently in use
 Working set, Peter Denning, former head

of Purdue CS department
 Swap space
 Can do deduplication to some degree

 Shared libraries
 Multiple processes of the same program

© 2017 Dr. Jeffrey A. Turkstra 10

Can speed OS tasks

 Program loading
 Demand-based, faulted in instead of

loaded all at once
 Fork and copy-on-write

 Again, no duplication of memory unless
needed

 Spawning new processes is fast
 Critical for fork() / exec() paradigm

© 2017 Dr. Jeffrey A. Turkstra 11

Sharing

 Permits simple, dynamic sharing
among processes
 Point the virtual addresses to the same

physical addresses

© 2017 Dr. Jeffrey A. Turkstra 12

Implementations

 Historic
 Process swapping – entire memory footprint

of process moved in and out (swapped)
between memory and disk

 Segment swapping – entire parts,
“segments” (determined by programmer)
are swapped

 Drawbacks
 Too much information at a time
 Slow, inefficient
 Fragmentation

© 2017 Dr. Jeffrey A. Turkstra 13

Segmentation

* http://cs.bc.edu/~donaldja/362/addresstranslation.html

© 2017 Dr. Jeffrey A. Turkstra 14

Demand-based paging

 Unit of memory swapped is a fixed-
size page
 Usually 4KiB now, can be 2MiB on

x86_64 “long mode”
 Also supports 1GB

 Eliminates external fragmentation
 Not internal fragmentation

© 2017 Dr. Jeffrey A. Turkstra 15

 Time to load page is huge, 107
nanoseconds

 Main memory operates as a fully
associative cache

 Try to avoid loading a page multiple
times
 Only compulsory misses and capacity

misses

© 2017 Dr. Jeffrey A. Turkstra 16

Terminology

 Physical memory divided into frames
 Virtual memory into pages

 Any page can be placed in any frame
 Missing page? Called a page fault
 CPU emits virtual addresses

 Translated/mapped by a combination of
hardware and software

 Memory mapping or address translation

© 2017 Dr. Jeffrey A. Turkstra 17

© 2017 Dr. Jeffrey A. Turkstra 18

 Pages currently residing in main
memory are resident

 Resident set refers to all in-memory
pages for a given process
 Ideally resident set ~= working set

© 2017 Dr. Jeffrey A. Turkstra 19

Page tables

 Page tables provide the mapping
from a virtual address to a physical
address
 Stored in main memory
 Managed by the OS
 Referenced by the MMU

© 2017 Dr. Jeffrey A. Turkstra 20

Virtual memory

© 2017 Dr. Jeffrey A. Turkstra 21

Translation

* http://cs.bc.edu/~donaldja/362/addresstranslation.html

© 2017 Dr. Jeffrey A. Turkstra 22

Hardware/software
approach

 Hardware handles the common case
 Translate virtual address for a resident

page to a physical address/frame
 Software invoked for exceptions

 Page fault – moving pages between disk
and memory

 Context switches
 Configuring hardware

© 2017 Dr. Jeffrey A. Turkstra 23

Control registers

© 2017 Dr. Jeffrey A. Turkstra 24

© 2017 Dr. Jeffrey A. Turkstra 25

Page table
Virtual address range Virtual page Mapped to Page metadata

0x00000000 to
0x00000FFF

0x00000 = (0)10 Page frame 0x024 Read only, not Dirty,
Executable (Text)

0x00001000 to
0x00001FFF

0x00001 Page frame 0xF05 Read, write (Data),
not Dirty

0x00002000 to
0x00002FFF

0x00002 Page frame 0xXXX Invalid

0x00003000 to
0x00003FFF

0x00003 Swap space
(via inode)

Read, write, Swap,
not Dirty

… … … …

0xFFFFE000 to
0xFFFFEFFF

0xFFFFE Page frame 0xF43 Read, write, not
Dirty

0xFFFFF000 to
0xFFFFFFFF

0xFFFFF = (220-1)10 Page frame 0x010 Read, write, Dirty

© 2017 Dr. Jeffrey A. Turkstra 26

Page tables

 Are stored in main memory

 Memory management unit (MMU)
 Historically external, newer

architectures include it on-chip

© 2017 Dr. Jeffrey A. Turkstra 2727

 CPU

L1, L2,
… cache

Memory
Management
Unit (MMU)

Translation Look-
aside Buffer (TLB)

Page Table
Register

DRAM

I/O devices

Address bus (one-way)

Data bus (bidirectional)

Physical-address bus

Virtual-address bus

Virtual-address bus

Page table 0

Page table 1

…

Page table n

© 2017 Dr. Jeffrey A. Turkstra 28

Virtually addressed
caches

 MMU/TLB below the cache
 Have to distinguish virtual addresses

from different processes
 Invalidate all entries on context switch
 Augment cache to include ASID (address

space identifier) along with tag
 Still have to worry about aliasing

 Some designs have MMU/TLB above
the cache

© 2017 Dr. Jeffrey A. Turkstra 29

Fast translation is critical

 Translation lookaside buffer, TLB
 Caches recent translations

 Invented by IBM
 MMU looks in TLB same time as page

table lookup starts
 In TLB, win!
 Program locality → 90% of the time or

more
 Context switches? Tagged TLB or

TLB shootdown

© 2017 Dr. Jeffrey A. Turkstra 30

Multi-level page tables

 For modern, large address spaces
they are necessary

 Used even in 32-bit land
 Page directory
 Or...

© 2017 Dr. Jeffrey A. Turkstra 31

© 2017 Dr. Jeffrey A. Turkstra 32

PTE metadata

 Valid bit, dirty bit
 Permission bits
 Page replacement algorithm support
 LRU, etc

© 2017 Dr. Jeffrey A. Turkstra 33

Processing a page fault

 Program attempts read/write to non-
resident page
 Fetch next instruction
 Access non-resident data

 MMU attempts translation, finds
valid bit = 0
 Generates interrupt to CPU

© 2017 Dr. Jeffrey A. Turkstra 34

 Interrupt handler saves return
address and registers

 Jumps to appropriate handler
 If page is invalid, SIGSEGV
 If valid, load it from disk and establish

the mapping
 What if there are no free frames?

 Restore registers, resume executing
instruction

© 2017 Dr. Jeffrey A. Turkstra 35

Restarting instructions

 Not always easy
 Page fault may have been in the

middle of an instruction
 Can it be skipped?
 Restart from beginning?

 Where?
 Side effects (eg, autoincrementing

address modes)
 Hardware support for tracking side

effects and rolling back

© 2017 Dr. Jeffrey A. Turkstra 36

Page replacement

 Optimal (MIN), Belady’s Algorithm
 Replace pages that won’t be used for

longest time
 Only works offline, minimal page faults

though
 FIFO
 NRU
 FIFO with second chance, “Clock

Algorithm”
 etc

© 2017 Dr. Jeffrey A. Turkstra 37

mmap()

 Text segment, for example
 Pages not read by default

 On-demand as accessed
 Fast startup
 Reduced memory usage

 Physical pages for text segment and
shared libraries can be shared
 Protections: PROT_READ|PROT_EXEC
 MAP_PRIVATE

© 2017 Dr. Jeffrey A. Turkstra 38

Virtual
Memory

0x00000000

0xFFFFFFFF

Disk

text
mmap

0x00020000
text

Executable File

38

© 2017 Dr. Jeffrey A. Turkstra 39

Shared code/library

Physical
Memory

texttext

Process 1
Virtual

Memory

Process 2
Virtual

Memory

text

39

© 2017 Dr. Jeffrey A. Turkstra 40

Data segment

 Multiple instances?
 Data shared until write
 “Copy on write”

© 2017 Dr. Jeffrey A. Turkstra 41

Physical
Memory

Process 1
Virtual

Memory

Process 2
Virtual

Memory

Data page A

Data page B

Data page C

Data page A

Data page B

Data page C

Data page A

Data page B

Data page C

41

© 2017 Dr. Jeffrey A. Turkstra 42

Physical
Memory

Process 1
Virtual

Memory

Process 2
Virtual

Memory

Data page A

Data page B

Data page C

Data page A*

Data page B

Data page C

Data page A

Data page B

Data page C

Data page A*

© 2017 Dr. Jeffrey A. Turkstra 43

Copy-on-write

 Happens on fork() too
 Critical optimization that allows

fork()/exec() approach to work

© 2017 Dr. Jeffrey A. Turkstra 44

Physical
Memory

Parent’s
Virtual

Memory

0’s

page A 0’s

page B 0’s

page C 0’s

© 2017 Dr. Jeffrey A. Turkstra 45

Physical
Memory

Parent’s
Virtual

Memory

0’s

page A 0’s

page B X

page C 0’s

page B X

© 2017 Dr. Jeffrey A. Turkstra 46

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

