

© 2017 Dr. Jeffrey A. Turkstra 1

CS 50011: Introduction to Systems IICS 50011: Introduction to Systems II

Lecture 6: Memory Management and Lecture 6: Memory Management and
Virtual MemoryVirtual Memory

Prof. Jeff TurkstraProf. Jeff Turkstra

© 2017 Dr. Jeffrey A. Turkstra 2

Lecture 07

 Virtual memory management
 Based on slides by Prof. George

Adams III

© 2017 Dr. Jeffrey A. Turkstra 3

Typical memory specs

 Use of hard disk should be carefully
managed for performance reasons

Level Size in bytes Typ. access time (ns)

Registers (64) 512 0.25

DRAM (4 GB) 4,294,967,296 60.00

Hard disk (1 TB) 1,000,000,000,000 10,000,000.00

© 2017 Dr. Jeffrey A. Turkstra 4

 “… a system has been devised to
make the core and drum*
combination appear to the
programmer as a single level store,
the requisite transfers taking place
automatically.”
 Kilburn et al., “One-level storage

systems”, 1962

© 2017 Dr. Jeffrey A. Turkstra 5

Motivation

 Efficient and safe (correct) sharing of
memory among multiple programs

 Permit caching of hard drive data in
main memory

 Allow programs to run even if
footprint is larger than available main
memory

 Sometimes motivations change as
technology changes

© 2017 Dr. Jeffrey A. Turkstra 6

Memory management

 Suppose we have:
 Internet Exploder (100MB)
 Micro$oft Word (100MB)
 Yahoo Messenger (30MB)
 Operating System (200MB)

 Computer has 256MB of RAM
 Have to quit programs before starting

others
 Virtual memory allows us to load/unload

portions as needed

© 2017 Dr. Jeffrey A. Turkstra 7

Programmer burden

 Without virtual memory, it’s the
programmer’s job to make programs
fit
 Divide into mutually exclusive chunks
 Dynamically load/unload chunks as

needed
 Same for libraries

 Sounds like fun. Not.

© 2017 Dr. Jeffrey A. Turkstra 8

Isolation

 Virtual memory limits sharing to
explicit cases

 How? Every program has its own
address space

 Virtual memory translates virtual
addresses to physical addresses

 Also enforces protection

© 2017 Dr. Jeffrey A. Turkstra 9

More efficient memory
utilization

 Keep in RAM only the portion of
address space currently in use
 Working set, Peter Denning, former head

of Purdue CS department
 Swap space
 Can do deduplication to some degree

 Shared libraries
 Multiple processes of the same program

© 2017 Dr. Jeffrey A. Turkstra 10

Can speed OS tasks

 Program loading
 Demand-based, faulted in instead of

loaded all at once
 Fork and copy-on-write

 Again, no duplication of memory unless
needed

 Spawning new processes is fast
 Critical for fork() / exec() paradigm

© 2017 Dr. Jeffrey A. Turkstra 11

Sharing

 Permits simple, dynamic sharing
among processes
 Point the virtual addresses to the same

physical addresses

© 2017 Dr. Jeffrey A. Turkstra 12

Implementations

 Historic
 Process swapping – entire memory footprint

of process moved in and out (swapped)
between memory and disk

 Segment swapping – entire parts,
“segments” (determined by programmer)
are swapped

 Drawbacks
 Too much information at a time
 Slow, inefficient
 Fragmentation

© 2017 Dr. Jeffrey A. Turkstra 13

Segmentation

* http://cs.bc.edu/~donaldja/362/addresstranslation.html

© 2017 Dr. Jeffrey A. Turkstra 14

Demand-based paging

 Unit of memory swapped is a fixed-
size page
 Usually 4KiB now, can be 2MiB on

x86_64 “long mode”
 Also supports 1GB

 Eliminates external fragmentation
 Not internal fragmentation

© 2017 Dr. Jeffrey A. Turkstra 15

 Time to load page is huge, 107
nanoseconds

 Main memory operates as a fully
associative cache

 Try to avoid loading a page multiple
times
 Only compulsory misses and capacity

misses

© 2017 Dr. Jeffrey A. Turkstra 16

Terminology

 Physical memory divided into frames
 Virtual memory into pages

 Any page can be placed in any frame
 Missing page? Called a page fault
 CPU emits virtual addresses

 Translated/mapped by a combination of
hardware and software

 Memory mapping or address translation

© 2017 Dr. Jeffrey A. Turkstra 17 © 2017 Dr. Jeffrey A. Turkstra 18

 Pages currently residing in main
memory are resident

 Resident set refers to all in-memory
pages for a given process
 Ideally resident set ~= working set

© 2017 Dr. Jeffrey A. Turkstra 19

Page tables

 Page tables provide the mapping
from a virtual address to a physical
address
 Stored in main memory
 Managed by the OS
 Referenced by the MMU

© 2017 Dr. Jeffrey A. Turkstra 20

Virtual memory

© 2017 Dr. Jeffrey A. Turkstra 21

Translation

* http://cs.bc.edu/~donaldja/362/addresstranslation.html

© 2017 Dr. Jeffrey A. Turkstra 22

Hardware/software
approach

 Hardware handles the common case
 Translate virtual address for a resident

page to a physical address/frame
 Software invoked for exceptions

 Page fault – moving pages between disk
and memory

 Context switches
 Configuring hardware

© 2017 Dr. Jeffrey A. Turkstra 23

Control registers

© 2017 Dr. Jeffrey A. Turkstra 24

© 2017 Dr. Jeffrey A. Turkstra 25

Page table
Virtual address range Virtual page Mapped to Page metadata

0x00000000 to
0x00000FFF

0x00000 = (0)10 Page frame 0x024 Read only, not Dirty,
Executable (Text)

0x00001000 to
0x00001FFF

0x00001 Page frame 0xF05 Read, write (Data),
not Dirty

0x00002000 to
0x00002FFF

0x00002 Page frame 0xXXX Invalid

0x00003000 to
0x00003FFF

0x00003 Swap space
(via inode)

Read, write, Swap,
not Dirty

… … … …

0xFFFFE000 to
0xFFFFEFFF

0xFFFFE Page frame 0xF43 Read, write, not
Dirty

0xFFFFF000 to
0xFFFFFFFF

0xFFFFF = (220-1)10 Page frame 0x010 Read, write, Dirty

© 2017 Dr. Jeffrey A. Turkstra 26

Page tables

 Are stored in main memory

 Memory management unit (MMU)
 Historically external, newer

architectures include it on-chip

© 2017 Dr. Jeffrey A. Turkstra 2727

 CPU

L1, L2,
… cache

Memory
Management
Unit (MMU)

Translation Look-
aside Buffer (TLB)

Page Table
Register

DRAM

I/O devices

Address bus (one-way)

Data bus (bidirectional)

Physical-address bus

Virtual-address bus

Virtual-address bus

Page table 0

Page table 1

…

Page table n

© 2017 Dr. Jeffrey A. Turkstra 28

Virtually addressed
caches

 MMU/TLB below the cache
 Have to distinguish virtual addresses

from different processes
 Invalidate all entries on context switch
 Augment cache to include ASID (address

space identifier) along with tag
 Still have to worry about aliasing

 Some designs have MMU/TLB above
the cache

© 2017 Dr. Jeffrey A. Turkstra 29

Fast translation is critical

 Translation lookaside buffer, TLB
 Caches recent translations

 Invented by IBM
 MMU looks in TLB same time as page

table lookup starts
 In TLB, win!
 Program locality → 90% of the time or

more
 Context switches? Tagged TLB or

TLB shootdown © 2017 Dr. Jeffrey A. Turkstra 30

Multi-level page tables

 For modern, large address spaces
they are necessary

 Used even in 32-bit land
 Page directory
 Or...

© 2017 Dr. Jeffrey A. Turkstra 31 © 2017 Dr. Jeffrey A. Turkstra 32

PTE metadata

 Valid bit, dirty bit
 Permission bits
 Page replacement algorithm support
 LRU, etc

© 2017 Dr. Jeffrey A. Turkstra 33

Processing a page fault

 Program attempts read/write to non-
resident page
 Fetch next instruction
 Access non-resident data

 MMU attempts translation, finds
valid bit = 0
 Generates interrupt to CPU

© 2017 Dr. Jeffrey A. Turkstra 34

 Interrupt handler saves return
address and registers

 Jumps to appropriate handler
 If page is invalid, SIGSEGV
 If valid, load it from disk and establish

the mapping
 What if there are no free frames?

 Restore registers, resume executing
instruction

© 2017 Dr. Jeffrey A. Turkstra 35

Restarting instructions

 Not always easy
 Page fault may have been in the

middle of an instruction
 Can it be skipped?
 Restart from beginning?

 Where?
 Side effects (eg, autoincrementing

address modes)
 Hardware support for tracking side

effects and rolling back
© 2017 Dr. Jeffrey A. Turkstra 36

Page replacement

 Optimal (MIN), Belady’s Algorithm
 Replace pages that won’t be used for

longest time
 Only works offline, minimal page faults

though
 FIFO
 NRU
 FIFO with second chance, “Clock

Algorithm”
 etc

© 2017 Dr. Jeffrey A. Turkstra 37

mmap()

 Text segment, for example
 Pages not read by default

 On-demand as accessed
 Fast startup
 Reduced memory usage

 Physical pages for text segment and
shared libraries can be shared
 Protections: PROT_READ|PROT_EXEC
 MAP_PRIVATE

© 2017 Dr. Jeffrey A. Turkstra 38

Virtual
Memory

0x00000000

0xFFFFFFFF

Disk

text
mmap

0x00020000
text

Executable File

38

© 2017 Dr. Jeffrey A. Turkstra 39

Shared code/library

Physical
Memory

texttext

Process 1
Virtual

Memory

Process 2
Virtual

Memory

text

39 © 2017 Dr. Jeffrey A. Turkstra 40

Data segment

 Multiple instances?
 Data shared until write
 “Copy on write”

© 2017 Dr. Jeffrey A. Turkstra 41

Physical
Memory

Process 1
Virtual

Memory

Process 2
Virtual

Memory

Data page A

Data page B

Data page C

Data page A

Data page B

Data page C

Data page A

Data page B

Data page C

41

© 2017 Dr. Jeffrey A. Turkstra 42

Physical
Memory

Process 1
Virtual

Memory

Process 2
Virtual

Memory

Data page A

Data page B

Data page C

Data page A*

Data page B

Data page C

Data page A

Data page B

Data page C

Data page A*

© 2017 Dr. Jeffrey A. Turkstra 43

Copy-on-write

 Happens on fork() too
 Critical optimization that allows

fork()/exec() approach to work

© 2017 Dr. Jeffrey A. Turkstra 44

Physical
Memory

Parent’s
Virtual

Memory

0’s

page A 0’s

page B 0’s

page C 0’s

© 2017 Dr. Jeffrey A. Turkstra 45

Physical
Memory

Parent’s
Virtual

Memory

0’s

page A 0’s

page B X

page C 0’s

page B X

© 2017 Dr. Jeffrey A. Turkstra 46

Questions?

