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CS 50011: Introduction to Systems IICS 50011: Introduction to Systems II

Lecture 6: Memory Management and Lecture 6: Memory Management and 
Virtual MemoryVirtual Memory

Prof. Jeff TurkstraProf. Jeff Turkstra
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Lecture 07

 Virtual memory management
 Based on slides by Prof. George 

Adams III
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Typical memory specs

 Use of hard disk should be carefully 
managed for performance reasons

Level Size in bytes Typ. access time (ns)

Registers (64) 512 0.25

DRAM (4 GB) 4,294,967,296 60.00

Hard disk (1 TB) 1,000,000,000,000 10,000,000.00
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 “… a system has been devised to 
make the core and drum* 
combination appear to the 
programmer as a single level store, 
the requisite transfers taking place 
automatically.”
 Kilburn et al., “One-level storage 

systems”, 1962
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Motivation

 Efficient and safe (correct) sharing of 
memory among multiple programs

 Permit caching of hard drive data in 
main memory

 Allow programs to run even if 
footprint is larger than available main 
memory

 Sometimes motivations change as 
technology changes
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Memory management

 Suppose we have:
 Internet Exploder (100MB)
 Micro$oft Word (100MB)
 Yahoo Messenger (30MB)
 Operating System (200MB)

 Computer has 256MB of RAM
 Have to quit programs before starting 

others
 Virtual memory allows us to load/unload 

portions as needed
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Programmer burden

 Without virtual memory, it’s the 
programmer’s job to make programs 
fit
 Divide into mutually exclusive chunks
 Dynamically load/unload chunks as 

needed
 Same for libraries

 Sounds like fun. Not.
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Isolation

 Virtual memory limits sharing to 
explicit cases

 How? Every program has its own 
address space

 Virtual memory translates virtual 
addresses to physical addresses

 Also enforces protection
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More efficient memory 
utilization

 Keep in RAM only the portion of 
address space currently in use
 Working set, Peter Denning, former head 

of Purdue CS department
 Swap space
 Can do deduplication to some degree

 Shared libraries
 Multiple processes of the same program
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Can speed OS tasks

 Program loading
 Demand-based, faulted in instead of 

loaded all at once
 Fork and copy-on-write

 Again, no duplication of memory unless 
needed

 Spawning new processes is fast
 Critical for fork() / exec() paradigm
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Sharing

 Permits simple, dynamic sharing 
among processes
 Point the virtual addresses to the same 

physical addresses
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Implementations

 Historic
 Process swapping – entire memory footprint 

of process moved in and out (swapped) 
between memory and disk

 Segment swapping – entire parts, 
“segments” (determined by programmer) 
are swapped

 Drawbacks
 Too much information at a time
 Slow, inefficient
 Fragmentation
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Segmentation

* http://cs.bc.edu/~donaldja/362/addresstranslation.html
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Demand-based paging

 Unit of memory swapped is a fixed-
size page
 Usually 4KiB now, can be 2MiB on 

x86_64 “long mode”
 Also supports 1GB

 Eliminates external fragmentation
 Not internal fragmentation
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 Time to load page is huge, 107 
nanoseconds

 Main memory operates as a fully 
associative cache

 Try to avoid loading a page multiple 
times
 Only compulsory misses and capacity 

misses
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Terminology

 Physical memory divided into frames
 Virtual memory into pages

 Any page can be placed in any frame
 Missing page? Called a page fault
 CPU emits virtual addresses

 Translated/mapped by a combination of 
hardware and software

 Memory mapping or address translation
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 Pages currently residing in main 
memory are resident

 Resident set refers to all in-memory 
pages for a given process
 Ideally resident set ~= working set
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Page tables

 Page tables provide the mapping 
from a virtual address to a physical 
address
 Stored in main memory
 Managed by the OS
 Referenced by the MMU
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Virtual memory
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Translation

* http://cs.bc.edu/~donaldja/362/addresstranslation.html
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Hardware/software 
approach

 Hardware handles the common case
 Translate virtual address for a resident 

page to a physical address/frame
 Software invoked for exceptions

 Page fault – moving pages between disk 
and memory

 Context switches
 Configuring hardware
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Control registers
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Page table
Virtual address range Virtual page Mapped to Page metadata

0x00000000 to 
0x00000FFF

0x00000 = (0)10 Page frame 0x024 Read only, not Dirty, 
Executable (Text)

0x00001000 to 
0x00001FFF

0x00001 Page frame 0xF05 Read, write (Data), 
not Dirty

0x00002000 to 
0x00002FFF

0x00002 Page frame 0xXXX Invalid

0x00003000 to 
0x00003FFF

0x00003 Swap space
(via inode)

Read, write, Swap, 
not Dirty

… … … …

0xFFFFE000 to 
0xFFFFEFFF

0xFFFFE Page frame 0xF43 Read, write, not 
Dirty

0xFFFFF000 to 
0xFFFFFFFF

0xFFFFF = (220-1)10 Page frame 0x010 Read, write, Dirty
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Page tables

 Are stored in main memory

 Memory management unit (MMU)
 Historically external, newer 

architectures include it on-chip

© 2017 Dr. Jeffrey A. Turkstra 2727

 CPU

L1, L2, 
… cache

Memory 
Management 
Unit (MMU)

Translation Look-
aside Buffer (TLB)

Page Table 
Register

DRAM

I/O devices

Address bus (one-way)

Data bus (bidirectional)

Physical-address bus

Virtual-address bus

Virtual-address bus

Page table 0

Page table 1

…

Page table n
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Virtually addressed 
caches

 MMU/TLB below the cache
 Have to distinguish virtual addresses 

from different processes
 Invalidate all entries on context switch
 Augment cache to include ASID (address 

space identifier) along with tag
 Still have to worry about aliasing

 Some designs have MMU/TLB above 
the cache
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Fast translation is critical

 Translation lookaside buffer, TLB
 Caches recent translations

 Invented by IBM
 MMU looks in TLB same time as page 

table lookup starts
 In TLB, win!
 Program locality → 90% of the time or 

more
 Context switches? Tagged TLB or 
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Multi-level page tables

 For modern, large address spaces 
they are necessary

 Used even in 32-bit land
 Page directory
 Or...
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PTE metadata

 Valid bit, dirty bit
 Permission bits
 Page replacement algorithm support
 LRU, etc
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Processing a page fault

 Program attempts read/write to non-
resident page
 Fetch next instruction
 Access non-resident data

 MMU attempts translation, finds 
valid bit = 0
 Generates interrupt to CPU
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 Interrupt handler saves return 
address and registers

 Jumps to appropriate handler
 If page is invalid, SIGSEGV
 If valid, load it from disk and establish 

the mapping
 What if there are no free frames?

 Restore registers, resume executing 
instruction
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Restarting instructions

 Not always easy
 Page fault may have been in the 

middle of an instruction
 Can it be skipped?
 Restart from beginning?

 Where?
 Side effects (eg, autoincrementing 

address modes)
 Hardware support for tracking side 

effects and rolling back
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Page replacement

 Optimal (MIN), Belady’s Algorithm
 Replace pages that won’t be used for 

longest time
 Only works offline, minimal page faults 

though
 FIFO
 NRU
 FIFO with second chance, “Clock 

Algorithm”
 etc



  

 

© 2017 Dr. Jeffrey A. Turkstra 37

mmap()

 Text segment, for example
 Pages not read by default

 On-demand as accessed
 Fast startup
 Reduced memory usage

 Physical pages for text segment and 
shared libraries can be shared
 Protections: PROT_READ|PROT_EXEC
 MAP_PRIVATE
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Virtual 
Memory

0x00000000

0xFFFFFFFF

Disk

text
mmap

0x00020000
text

Executable File 

38
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Shared code/library

Physical 
Memory

texttext

Process 1 
Virtual 

Memory

Process 2 
Virtual 

Memory

text
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Data segment

 Multiple instances?
 Data shared until write
 “Copy on write”
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Physical 
Memory

Process 1 
Virtual 

Memory

Process 2 
Virtual 

Memory

Data page A

Data page B

Data page C

Data page A

Data page B

Data page C

Data page A

Data page B

Data page C
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Physical 
Memory

Process 1 
Virtual 

Memory

Process 2 
Virtual 

Memory

Data page A

Data page B

Data page C

Data page A*

Data page B

Data page C

Data page A

Data page B

Data page C

Data page A*
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Copy-on-write

 Happens on fork() too
 Critical optimization that allows 

fork()/exec() approach to work
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Physical 
Memory

Parent’s 
Virtual 

Memory

0’s

page A 0’s

page B 0’s

page C 0’s
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Physical 
Memory

Parent’s 
Virtual 

Memory

0’s

page A 0’s

page B X

page C 0’s

page B X
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Questions?


