
© 2017 Dr. Jeffrey A. Turkstra 1

CS 50011: Introduction to Systems IICS 50011: Introduction to Systems II

Lecture 5: Low(er) Level Security Lecture 5: Low(er) Level Security 

Prof. Jeff TurkstraProf. Jeff Turkstra



© 2017 Dr. Jeffrey A. Turkstra 2

Lecture 06

 Virtualization
 Security-relevant features of x86_64
 Stack canaries
 Data execution prevention



© 2017 Dr. Jeffrey A. Turkstra 3

Rings

 Already covered privilege levels
 “Hierarchical protection domains”
 Indicated by CPL in CS and SS 

segment registers
 Ring 0-only instructions



© 2017 Dr. Jeffrey A. Turkstra 4

Virtualization

 User code in ring 3
 Both for host, and guest
 Can still set up page table entries (more 

later)
 Problem lies with guest kernel

 Cannot run in ring 0 – access to entire 
host

 Full software emulation
 All code run by the guest is analyzed and 

transformed



© 2017 Dr. Jeffrey A. Turkstra 5

 QEMU has a recompiler, VirtualBox uses 
it (sometimes)

 When guest code disables interrupts and 
VirtualBox doesn’t know when they’ll be 
switched back on

 Real-mode or protected-mode code (BIOS, 
DOS, OS startup)

 Certain instructions (eg, LIDT – load 
interrupt descriptor table)



© 2017 Dr. Jeffrey A. Turkstra 6

 Paravirtualization
 Only specially modified OSes are 

permitted to run
 Pass most of the privileged execution on 

to the hypervisor
 Guest OS must be modified



© 2017 Dr. Jeffrey A. Turkstra 7

VirtualBox

 Guest code: ring 3, unmodified
 “Raw mode”

 “Nasty trick” for ring-0 code
 Reconfigures the guest so ring 0 code 

runs in ring 1 instead
 Not normally used
 Allows hypervisor to trap privileged 

instructions (and I/O registers)
 “Real” ring 0 then takes over



© 2017 Dr. Jeffrey A. Turkstra 8

 Downsides
 Ring 1 causes lots of additional 

instruction faults
 No privileged instructions

 VMM must step in each time
 Ring 1 actually has flaws

 LGDT/SGDT, LIDT/SIDT, POPF/PUSHF
 “Load” is privileged, “store” is not
 CPUID too

 Hypervisor reserves part of guest’s 
address space for its own use



© 2017 Dr. Jeffrey A. Turkstra 9

 SYSENTER always transitions to ring 0
 Must trap and emulate the instruction

 Etc



© 2017 Dr. Jeffrey A. Turkstra 10

VirtualBox CSAM

 Code Scanning and Analysis Manager
 Disassembles guest code

 Patch Manager (PATM)
 Runtime replacement

 Before ring 0, CSAM scans recursively to 
identify problem instructions
 PATM in-situ patching replaces the 

instruction with a jump to hypervisor 
memory

 Arguably as advanced as a recompiler



© 2017 Dr. Jeffrey A. Turkstra 11

VT-x

 VMX root mode
 CPU operates as usual

 non-root mode
 Virtual Machine Control Structure 

(VMCS) now controls CPU operation
 Still four rings, but instruction behavior 

significantly different
 Guest OSes run here



© 2017 Dr. Jeffrey A. Turkstra 12

 “VM entry” root to non-root
 “VM exit” non-root to root
 Guest and host state area that is 

saved/restored on entry/exit
 VMCS control which operations 

cause VM exits



© 2017 Dr. Jeffrey A. Turkstra 13

 Why?
 Guest has its own complete address 

space (not shared with hypervisor)
 Guest kernel runs in ring 0

 SYSENTER works fine, for example
 I/O, certain instructions still cause VM 

exit



© 2017 Dr. Jeffrey A. Turkstra 14

AMD-V

 Slightly more complete virtualization 
environment
 Doesn’t require non-root code to run 

with paging enabled
 Can run protected mode and real-mode 

software
 Usually only firmware and OS loaders



© 2017 Dr. Jeffrey A. Turkstra 15

AES instruction set

 ASENC: One round
 AESNCLAST: Last round
 AESDEC: One round decryption
 AESDECLAST: Last round decryption
 AESKEYGENASSIST: Assist in AES 

round key generation
 AESIMC: AES Inverse Mix Columns
 PCLMULQDQ: Carryless multiply



© 2017 Dr. Jeffrey A. Turkstra 16

 cryptsetup benchmark



© 2017 Dr. Jeffrey A. Turkstra 17

RDRAND

 On-chip random number generator
 “Intel Secure Key”
 DRND – Digital random number 

generator
 Pairs of 256-bit raw entropy samples 

from “hardware entropy source” 
applied to AES in CBC-MAC mode

 Reduces it to a single 256-bit 
conditioned sample, used as the seed



© 2017 Dr. Jeffrey A. Turkstra 18

 NIST SP 800-90A
 Maximum of 511 128-bit samples 

before seed is changed
 RDSEED instruction

 Newer, intended as entropy source for 
software PRNGs

 Thermal noise-based
 How do you know it’s random 

enough?



© 2017 Dr. Jeffrey A. Turkstra 19

Microcode updates

 Contents entirely undocumented
 Update procedure is documented
 Encrypted



© 2017 Dr. Jeffrey A. Turkstra 20

Executing where we 
shouldn’t

 Since 80286, preventable with 
segmentation
 Most OSes: we want it flat



© 2017 Dr. Jeffrey A. Turkstra 21

NX bit

 No-eXecute
 Segregate code from other storage

 Historically found on Harvard 
architectures

 Mark certain areas of memory as 
non-executable
 Limits effectiveness of buffer overflow 

attacks
 To a degree, return-to-libc



© 2017 Dr. Jeffrey A. Turkstra 22

Execute disable



© 2017 Dr. Jeffrey A. Turkstra 23

 Bit number 63 for 64-bit page tables
 1 = no execute, 0 = execute

 Not on x86’s original 32-bit page 
tables
 But we can do it in software



© 2017 Dr. Jeffrey A. Turkstra 24

Exec Shield

 Red Hat, Ingo Molnar
 Approximates NX emulation by 

tracking upper code segment limit
 Cannot protect pages below the limit
 mprotect() higher memory (like the 

stack)? Everything below it is now 
executable



© 2017 Dr. Jeffrey A. Turkstra 25

PaX

 grsecurity
 NX emulation and a whole bunch of 

other stuff
 Linus refuses to merge it

 For good reason



© 2017 Dr. Jeffrey A. Turkstra 26

RSBAC

 Rule Set Based Access Control
 Same issue
 Last major update, 9/13/2016
 Similar to SELinux



© 2017 Dr. Jeffrey A. Turkstra 27

AppArmor

 Kernel module
 Alternative to SELinux
 Filesystem agnostic
 Included in Ubuntu
 Owned by SUSE

 Well, trademark at least



© 2017 Dr. Jeffrey A. Turkstra 28

Stack canaries

 Example
 -fstack-protector-all



© 2017 Dr. Jeffrey A. Turkstra 29

Address space layout 
randomization

 Mitigates against return-to-libc style 
attacks
 Requires reliably locating relevant 

function(s)
 ASLR changes location of executable, 

stack, heap, libraries
 pmap example



© 2017 Dr. Jeffrey A. Turkstra 30

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

