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Lecture 06

 Virtualization
 Security-relevant features of x86_64
 Stack canaries
 Data execution prevention
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Rings

 Already covered privilege levels
 “Hierarchical protection domains”
 Indicated by CPL in CS and SS 

segment registers
 Ring 0-only instructions
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Virtualization

 User code in ring 3
 Both for host, and guest
 Can still set up page table entries (more 

later)
 Problem lies with guest kernel

 Cannot run in ring 0 – access to entire 
host

 Full software emulation
 All code run by the guest is analyzed and 

transformed
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 QEMU has a recompiler, VirtualBox uses 
it (sometimes)

 When guest code disables interrupts and 
VirtualBox doesn’t know when they’ll be 
switched back on

 Real-mode or protected-mode code (BIOS, 
DOS, OS startup)

 Certain instructions (eg, LIDT – load 
interrupt descriptor table)
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 Paravirtualization
 Only specially modified OSes are 

permitted to run
 Pass most of the privileged execution on 

to the hypervisor
 Guest OS must be modified



© 2017 Dr. Jeffrey A. Turkstra 7

VirtualBox

 Guest code: ring 3, unmodified
 “Raw mode”

 “Nasty trick” for ring-0 code
 Reconfigures the guest so ring 0 code 

runs in ring 1 instead
 Not normally used
 Allows hypervisor to trap privileged 

instructions (and I/O registers)
 “Real” ring 0 then takes over
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 Downsides
 Ring 1 causes lots of additional 

instruction faults
 No privileged instructions

 VMM must step in each time
 Ring 1 actually has flaws

 LGDT/SGDT, LIDT/SIDT, POPF/PUSHF
 “Load” is privileged, “store” is not
 CPUID too

 Hypervisor reserves part of guest’s 
address space for its own use
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 SYSENTER always transitions to ring 0
 Must trap and emulate the instruction

 Etc
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VirtualBox CSAM

 Code Scanning and Analysis Manager
 Disassembles guest code

 Patch Manager (PATM)
 Runtime replacement

 Before ring 0, CSAM scans recursively to 
identify problem instructions
 PATM in-situ patching replaces the 

instruction with a jump to hypervisor 
memory

 Arguably as advanced as a recompiler
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VT-x

 VMX root mode
 CPU operates as usual

 non-root mode
 Virtual Machine Control Structure 

(VMCS) now controls CPU operation
 Still four rings, but instruction behavior 

significantly different
 Guest OSes run here
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 “VM entry” root to non-root
 “VM exit” non-root to root
 Guest and host state area that is 

saved/restored on entry/exit
 VMCS control which operations 

cause VM exits



© 2017 Dr. Jeffrey A. Turkstra 13

 Why?
 Guest has its own complete address 

space (not shared with hypervisor)
 Guest kernel runs in ring 0

 SYSENTER works fine, for example
 I/O, certain instructions still cause VM 

exit
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AMD-V

 Slightly more complete virtualization 
environment
 Doesn’t require non-root code to run 

with paging enabled
 Can run protected mode and real-mode 

software
 Usually only firmware and OS loaders
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AES instruction set

 ASENC: One round
 AESNCLAST: Last round
 AESDEC: One round decryption
 AESDECLAST: Last round decryption
 AESKEYGENASSIST: Assist in AES 

round key generation
 AESIMC: AES Inverse Mix Columns
 PCLMULQDQ: Carryless multiply
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 cryptsetup benchmark
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RDRAND

 On-chip random number generator
 “Intel Secure Key”
 DRND – Digital random number 

generator
 Pairs of 256-bit raw entropy samples 

from “hardware entropy source” 
applied to AES in CBC-MAC mode

 Reduces it to a single 256-bit 
conditioned sample, used as the seed



© 2017 Dr. Jeffrey A. Turkstra 18

 NIST SP 800-90A
 Maximum of 511 128-bit samples 

before seed is changed
 RDSEED instruction

 Newer, intended as entropy source for 
software PRNGs

 Thermal noise-based
 How do you know it’s random 

enough?
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Microcode updates

 Contents entirely undocumented
 Update procedure is documented
 Encrypted
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Executing where we 
shouldn’t

 Since 80286, preventable with 
segmentation
 Most OSes: we want it flat
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NX bit

 No-eXecute
 Segregate code from other storage

 Historically found on Harvard 
architectures

 Mark certain areas of memory as 
non-executable
 Limits effectiveness of buffer overflow 

attacks
 To a degree, return-to-libc
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Execute disable
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 Bit number 63 for 64-bit page tables
 1 = no execute, 0 = execute

 Not on x86’s original 32-bit page 
tables
 But we can do it in software
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Exec Shield

 Red Hat, Ingo Molnar
 Approximates NX emulation by 

tracking upper code segment limit
 Cannot protect pages below the limit
 mprotect() higher memory (like the 

stack)? Everything below it is now 
executable



© 2017 Dr. Jeffrey A. Turkstra 25

PaX

 grsecurity
 NX emulation and a whole bunch of 

other stuff
 Linus refuses to merge it

 For good reason
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RSBAC

 Rule Set Based Access Control
 Same issue
 Last major update, 9/13/2016
 Similar to SELinux
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AppArmor

 Kernel module
 Alternative to SELinux
 Filesystem agnostic
 Included in Ubuntu
 Owned by SUSE

 Well, trademark at least
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Stack canaries

 Example
 -fstack-protector-all
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Address space layout 
randomization

 Mitigates against return-to-libc style 
attacks
 Requires reliably locating relevant 

function(s)
 ASLR changes location of executable, 

stack, heap, libraries
 pmap example
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Questions?
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