
© 2017 Dr. Jeffrey A. Turkstra 1

CS 50011: Introduction to Systems IICS 50011: Introduction to Systems II

Lecture 5: Low(er) Level Security Lecture 5: Low(er) Level Security 

Prof. Jeff TurkstraProf. Jeff Turkstra



© 2017 Dr. Jeffrey A. Turkstra 2

Lecture 06

 Virtualization
 Security-relevant features of x86_64
 Stack canaries
 Data execution prevention



© 2017 Dr. Jeffrey A. Turkstra 3

Rings

 Already covered privilege levels
 “Hierarchical protection domains”
 Indicated by CPL in CS and SS 

segment registers
 Ring 0-only instructions



© 2017 Dr. Jeffrey A. Turkstra 4

Virtualization

 User code in ring 3
 Both for host, and guest
 Can still set up page table entries (more 

later)
 Problem lies with guest kernel

 Cannot run in ring 0 – access to entire 
host

 Full software emulation
 All code run by the guest is analyzed and 

transformed



© 2017 Dr. Jeffrey A. Turkstra 5

 QEMU has a recompiler, VirtualBox uses 
it (sometimes)

 When guest code disables interrupts and 
VirtualBox doesn’t know when they’ll be 
switched back on

 Real-mode or protected-mode code (BIOS, 
DOS, OS startup)

 Certain instructions (eg, LIDT – load 
interrupt descriptor table)



© 2017 Dr. Jeffrey A. Turkstra 6

 Paravirtualization
 Only specially modified OSes are 

permitted to run
 Pass most of the privileged execution on 

to the hypervisor
 Guest OS must be modified



© 2017 Dr. Jeffrey A. Turkstra 7

VirtualBox

 Guest code: ring 3, unmodified
 “Raw mode”

 “Nasty trick” for ring-0 code
 Reconfigures the guest so ring 0 code 

runs in ring 1 instead
 Not normally used
 Allows hypervisor to trap privileged 

instructions (and I/O registers)
 “Real” ring 0 then takes over



© 2017 Dr. Jeffrey A. Turkstra 8

 Downsides
 Ring 1 causes lots of additional 

instruction faults
 No privileged instructions

 VMM must step in each time
 Ring 1 actually has flaws

 LGDT/SGDT, LIDT/SIDT, POPF/PUSHF
 “Load” is privileged, “store” is not
 CPUID too

 Hypervisor reserves part of guest’s 
address space for its own use



© 2017 Dr. Jeffrey A. Turkstra 9

 SYSENTER always transitions to ring 0
 Must trap and emulate the instruction

 Etc



© 2017 Dr. Jeffrey A. Turkstra 10

VirtualBox CSAM

 Code Scanning and Analysis Manager
 Disassembles guest code

 Patch Manager (PATM)
 Runtime replacement

 Before ring 0, CSAM scans recursively to 
identify problem instructions
 PATM in-situ patching replaces the 

instruction with a jump to hypervisor 
memory

 Arguably as advanced as a recompiler



© 2017 Dr. Jeffrey A. Turkstra 11

VT-x

 VMX root mode
 CPU operates as usual

 non-root mode
 Virtual Machine Control Structure 

(VMCS) now controls CPU operation
 Still four rings, but instruction behavior 

significantly different
 Guest OSes run here



© 2017 Dr. Jeffrey A. Turkstra 12

 “VM entry” root to non-root
 “VM exit” non-root to root
 Guest and host state area that is 

saved/restored on entry/exit
 VMCS control which operations 

cause VM exits



© 2017 Dr. Jeffrey A. Turkstra 13

 Why?
 Guest has its own complete address 

space (not shared with hypervisor)
 Guest kernel runs in ring 0

 SYSENTER works fine, for example
 I/O, certain instructions still cause VM 

exit



© 2017 Dr. Jeffrey A. Turkstra 14

AMD-V

 Slightly more complete virtualization 
environment
 Doesn’t require non-root code to run 

with paging enabled
 Can run protected mode and real-mode 

software
 Usually only firmware and OS loaders



© 2017 Dr. Jeffrey A. Turkstra 15

AES instruction set

 ASENC: One round
 AESNCLAST: Last round
 AESDEC: One round decryption
 AESDECLAST: Last round decryption
 AESKEYGENASSIST: Assist in AES 

round key generation
 AESIMC: AES Inverse Mix Columns
 PCLMULQDQ: Carryless multiply



© 2017 Dr. Jeffrey A. Turkstra 16

 cryptsetup benchmark



© 2017 Dr. Jeffrey A. Turkstra 17

RDRAND

 On-chip random number generator
 “Intel Secure Key”
 DRND – Digital random number 

generator
 Pairs of 256-bit raw entropy samples 

from “hardware entropy source” 
applied to AES in CBC-MAC mode

 Reduces it to a single 256-bit 
conditioned sample, used as the seed



© 2017 Dr. Jeffrey A. Turkstra 18

 NIST SP 800-90A
 Maximum of 511 128-bit samples 

before seed is changed
 RDSEED instruction

 Newer, intended as entropy source for 
software PRNGs

 Thermal noise-based
 How do you know it’s random 

enough?



© 2017 Dr. Jeffrey A. Turkstra 19

Microcode updates

 Contents entirely undocumented
 Update procedure is documented
 Encrypted



© 2017 Dr. Jeffrey A. Turkstra 20

Executing where we 
shouldn’t

 Since 80286, preventable with 
segmentation
 Most OSes: we want it flat



© 2017 Dr. Jeffrey A. Turkstra 21

NX bit

 No-eXecute
 Segregate code from other storage

 Historically found on Harvard 
architectures

 Mark certain areas of memory as 
non-executable
 Limits effectiveness of buffer overflow 

attacks
 To a degree, return-to-libc



© 2017 Dr. Jeffrey A. Turkstra 22

Execute disable



© 2017 Dr. Jeffrey A. Turkstra 23

 Bit number 63 for 64-bit page tables
 1 = no execute, 0 = execute

 Not on x86’s original 32-bit page 
tables
 But we can do it in software



© 2017 Dr. Jeffrey A. Turkstra 24

Exec Shield

 Red Hat, Ingo Molnar
 Approximates NX emulation by 

tracking upper code segment limit
 Cannot protect pages below the limit
 mprotect() higher memory (like the 

stack)? Everything below it is now 
executable



© 2017 Dr. Jeffrey A. Turkstra 25

PaX

 grsecurity
 NX emulation and a whole bunch of 

other stuff
 Linus refuses to merge it

 For good reason



© 2017 Dr. Jeffrey A. Turkstra 26

RSBAC

 Rule Set Based Access Control
 Same issue
 Last major update, 9/13/2016
 Similar to SELinux



© 2017 Dr. Jeffrey A. Turkstra 27

AppArmor

 Kernel module
 Alternative to SELinux
 Filesystem agnostic
 Included in Ubuntu
 Owned by SUSE

 Well, trademark at least



© 2017 Dr. Jeffrey A. Turkstra 28

Stack canaries

 Example
 -fstack-protector-all



© 2017 Dr. Jeffrey A. Turkstra 29

Address space layout 
randomization

 Mitigates against return-to-libc style 
attacks
 Requires reliably locating relevant 

function(s)
 ASLR changes location of executable, 

stack, heap, libraries
 pmap example



© 2017 Dr. Jeffrey A. Turkstra 30

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

