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Lecture 06

 Virtualization
 Security-relevant features of x86_64
 Stack canaries
 Data execution prevention
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Rings

 Already covered privilege levels
 “Hierarchical protection domains”
 Indicated by CPL in CS and SS 

segment registers
 Ring 0-only instructions
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Virtualization

 User code in ring 3
 Both for host, and guest
 Can still set up page table entries (more 

later)
 Problem lies with guest kernel

 Cannot run in ring 0 – access to entire 
host

 Full software emulation
 All code run by the guest is analyzed and 

transformed
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 QEMU has a recompiler, VirtualBox uses 
it (sometimes)

 When guest code disables interrupts and 
VirtualBox doesn’t know when they’ll be 
switched back on

 Real-mode or protected-mode code (BIOS, 
DOS, OS startup)

 Certain instructions (eg, LIDT – load 
interrupt descriptor table)
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 Paravirtualization
 Only specially modified OSes are 

permitted to run
 Pass most of the privileged execution on 

to the hypervisor
 Guest OS must be modified
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VirtualBox

 Guest code: ring 3, unmodified
 “Raw mode”

 “Nasty trick” for ring-0 code
 Reconfigures the guest so ring 0 code 

runs in ring 1 instead
 Not normally used
 Allows hypervisor to trap privileged 

instructions (and I/O registers)
 “Real” ring 0 then takes over
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 Downsides
 Ring 1 causes lots of additional 

instruction faults
 No privileged instructions

 VMM must step in each time
 Ring 1 actually has flaws

 LGDT/SGDT, LIDT/SIDT, POPF/PUSHF
 “Load” is privileged, “store” is not
 CPUID too

 Hypervisor reserves part of guest’s 
address space for its own use
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 SYSENTER always transitions to ring 0
 Must trap and emulate the instruction

 Etc
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VirtualBox CSAM

 Code Scanning and Analysis Manager
 Disassembles guest code

 Patch Manager (PATM)
 Runtime replacement

 Before ring 0, CSAM scans recursively to 
identify problem instructions
 PATM in-situ patching replaces the 

instruction with a jump to hypervisor 
memory

 Arguably as advanced as a recompiler
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VT-x

 VMX root mode
 CPU operates as usual

 non-root mode
 Virtual Machine Control Structure 

(VMCS) now controls CPU operation
 Still four rings, but instruction behavior 

significantly different
 Guest OSes run here
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 “VM entry” root to non-root
 “VM exit” non-root to root
 Guest and host state area that is 

saved/restored on entry/exit
 VMCS control which operations 

cause VM exits
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 Why?
 Guest has its own complete address 

space (not shared with hypervisor)
 Guest kernel runs in ring 0

 SYSENTER works fine, for example
 I/O, certain instructions still cause VM 

exit
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AMD-V

 Slightly more complete virtualization 
environment
 Doesn’t require non-root code to run 

with paging enabled
 Can run protected mode and real-mode 

software
 Usually only firmware and OS loaders
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AES instruction set

 ASENC: One round
 AESNCLAST: Last round
 AESDEC: One round decryption
 AESDECLAST: Last round decryption
 AESKEYGENASSIST: Assist in AES 

round key generation
 AESIMC: AES Inverse Mix Columns
 PCLMULQDQ: Carryless multiply
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 cryptsetup benchmark
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RDRAND

 On-chip random number generator
 “Intel Secure Key”
 DRND – Digital random number 

generator
 Pairs of 256-bit raw entropy samples 

from “hardware entropy source” 
applied to AES in CBC-MAC mode

 Reduces it to a single 256-bit 
conditioned sample, used as the seed
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 NIST SP 800-90A
 Maximum of 511 128-bit samples 

before seed is changed
 RDSEED instruction

 Newer, intended as entropy source for 
software PRNGs

 Thermal noise-based
 How do you know it’s random 

enough?
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Microcode updates

 Contents entirely undocumented
 Update procedure is documented
 Encrypted
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Executing where we 
shouldn’t

 Since 80286, preventable with 
segmentation
 Most OSes: we want it flat
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NX bit

 No-eXecute
 Segregate code from other storage

 Historically found on Harvard 
architectures

 Mark certain areas of memory as 
non-executable
 Limits effectiveness of buffer overflow 

attacks
 To a degree, return-to-libc
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Execute disable
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 Bit number 63 for 64-bit page tables
 1 = no execute, 0 = execute

 Not on x86’s original 32-bit page 
tables
 But we can do it in software
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Exec Shield

 Red Hat, Ingo Molnar
 Approximates NX emulation by 

tracking upper code segment limit
 Cannot protect pages below the limit
 mprotect() higher memory (like the 

stack)? Everything below it is now 
executable
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PaX

 grsecurity
 NX emulation and a whole bunch of 

other stuff
 Linus refuses to merge it

 For good reason
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RSBAC

 Rule Set Based Access Control
 Same issue
 Last major update, 9/13/2016
 Similar to SELinux



© 2017 Dr. Jeffrey A. Turkstra 27

AppArmor

 Kernel module
 Alternative to SELinux
 Filesystem agnostic
 Included in Ubuntu
 Owned by SUSE

 Well, trademark at least



© 2017 Dr. Jeffrey A. Turkstra 28

Stack canaries

 Example
 -fstack-protector-all
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Address space layout 
randomization

 Mitigates against return-to-libc style 
attacks
 Requires reliably locating relevant 

function(s)
 ASLR changes location of executable, 

stack, heap, libraries
 pmap example
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Questions?
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