

© 2017 Dr. Jeffrey A. Turkstra 1

CS 50011: Introduction to Systems IICS 50011: Introduction to Systems II

Lecture 5: Low(er) Level Security Lecture 5: Low(er) Level Security

Prof. Jeff TurkstraProf. Jeff Turkstra

© 2017 Dr. Jeffrey A. Turkstra 2

Lecture 06

 Virtualization
 Security-relevant features of x86_64
 Stack canaries
 Data execution prevention

© 2017 Dr. Jeffrey A. Turkstra 3

Rings

 Already covered privilege levels
 “Hierarchical protection domains”
 Indicated by CPL in CS and SS

segment registers
 Ring 0-only instructions

© 2017 Dr. Jeffrey A. Turkstra 4

Virtualization

 User code in ring 3
 Both for host, and guest
 Can still set up page table entries (more

later)
 Problem lies with guest kernel

 Cannot run in ring 0 – access to entire
host

 Full software emulation
 All code run by the guest is analyzed and

transformed

© 2017 Dr. Jeffrey A. Turkstra 5

 QEMU has a recompiler, VirtualBox uses
it (sometimes)

 When guest code disables interrupts and
VirtualBox doesn’t know when they’ll be
switched back on

 Real-mode or protected-mode code (BIOS,
DOS, OS startup)

 Certain instructions (eg, LIDT – load
interrupt descriptor table)

© 2017 Dr. Jeffrey A. Turkstra 6

 Paravirtualization
 Only specially modified OSes are

permitted to run
 Pass most of the privileged execution on

to the hypervisor
 Guest OS must be modified

© 2017 Dr. Jeffrey A. Turkstra 7

VirtualBox

 Guest code: ring 3, unmodified
 “Raw mode”

 “Nasty trick” for ring-0 code
 Reconfigures the guest so ring 0 code

runs in ring 1 instead
 Not normally used
 Allows hypervisor to trap privileged

instructions (and I/O registers)
 “Real” ring 0 then takes over

© 2017 Dr. Jeffrey A. Turkstra 8

 Downsides
 Ring 1 causes lots of additional

instruction faults
 No privileged instructions

 VMM must step in each time
 Ring 1 actually has flaws

 LGDT/SGDT, LIDT/SIDT, POPF/PUSHF
 “Load” is privileged, “store” is not
 CPUID too

 Hypervisor reserves part of guest’s
address space for its own use

© 2017 Dr. Jeffrey A. Turkstra 9

 SYSENTER always transitions to ring 0
 Must trap and emulate the instruction

 Etc

© 2017 Dr. Jeffrey A. Turkstra 10

VirtualBox CSAM

 Code Scanning and Analysis Manager
 Disassembles guest code

 Patch Manager (PATM)
 Runtime replacement

 Before ring 0, CSAM scans recursively to
identify problem instructions
 PATM in-situ patching replaces the

instruction with a jump to hypervisor
memory

 Arguably as advanced as a recompiler

© 2017 Dr. Jeffrey A. Turkstra 11

VT-x

 VMX root mode
 CPU operates as usual

 non-root mode
 Virtual Machine Control Structure

(VMCS) now controls CPU operation
 Still four rings, but instruction behavior

significantly different
 Guest OSes run here

© 2017 Dr. Jeffrey A. Turkstra 12

 “VM entry” root to non-root
 “VM exit” non-root to root
 Guest and host state area that is

saved/restored on entry/exit
 VMCS control which operations

cause VM exits

© 2017 Dr. Jeffrey A. Turkstra 13

 Why?
 Guest has its own complete address

space (not shared with hypervisor)
 Guest kernel runs in ring 0

 SYSENTER works fine, for example
 I/O, certain instructions still cause VM

exit

© 2017 Dr. Jeffrey A. Turkstra 14

AMD-V

 Slightly more complete virtualization
environment
 Doesn’t require non-root code to run

with paging enabled
 Can run protected mode and real-mode

software
 Usually only firmware and OS loaders

© 2017 Dr. Jeffrey A. Turkstra 15

AES instruction set

 ASENC: One round
 AESNCLAST: Last round
 AESDEC: One round decryption
 AESDECLAST: Last round decryption
 AESKEYGENASSIST: Assist in AES

round key generation
 AESIMC: AES Inverse Mix Columns
 PCLMULQDQ: Carryless multiply

© 2017 Dr. Jeffrey A. Turkstra 16

 cryptsetup benchmark

© 2017 Dr. Jeffrey A. Turkstra 17

RDRAND

 On-chip random number generator
 “Intel Secure Key”
 DRND – Digital random number

generator
 Pairs of 256-bit raw entropy samples

from “hardware entropy source”
applied to AES in CBC-MAC mode

 Reduces it to a single 256-bit
conditioned sample, used as the seed

© 2017 Dr. Jeffrey A. Turkstra 18

 NIST SP 800-90A
 Maximum of 511 128-bit samples

before seed is changed
 RDSEED instruction

 Newer, intended as entropy source for
software PRNGs

 Thermal noise-based
 How do you know it’s random

enough?

© 2017 Dr. Jeffrey A. Turkstra 19

Microcode updates

 Contents entirely undocumented
 Update procedure is documented
 Encrypted

© 2017 Dr. Jeffrey A. Turkstra 20

Executing where we
shouldn’t

 Since 80286, preventable with
segmentation
 Most OSes: we want it flat

© 2017 Dr. Jeffrey A. Turkstra 21

NX bit

 No-eXecute
 Segregate code from other storage

 Historically found on Harvard
architectures

 Mark certain areas of memory as
non-executable
 Limits effectiveness of buffer overflow

attacks
 To a degree, return-to-libc

© 2017 Dr. Jeffrey A. Turkstra 22

Execute disable

© 2017 Dr. Jeffrey A. Turkstra 23

 Bit number 63 for 64-bit page tables
 1 = no execute, 0 = execute

 Not on x86’s original 32-bit page
tables
 But we can do it in software

© 2017 Dr. Jeffrey A. Turkstra 24

Exec Shield

 Red Hat, Ingo Molnar
 Approximates NX emulation by

tracking upper code segment limit
 Cannot protect pages below the limit
 mprotect() higher memory (like the

stack)? Everything below it is now
executable

© 2017 Dr. Jeffrey A. Turkstra 25

PaX

 grsecurity
 NX emulation and a whole bunch of

other stuff
 Linus refuses to merge it

 For good reason

© 2017 Dr. Jeffrey A. Turkstra 26

RSBAC

 Rule Set Based Access Control
 Same issue
 Last major update, 9/13/2016
 Similar to SELinux

© 2017 Dr. Jeffrey A. Turkstra 27

AppArmor

 Kernel module
 Alternative to SELinux
 Filesystem agnostic
 Included in Ubuntu
 Owned by SUSE

 Well, trademark at least

© 2017 Dr. Jeffrey A. Turkstra 28

Stack canaries

 Example
 -fstack-protector-all

© 2017 Dr. Jeffrey A. Turkstra 29

Address space layout
randomization

 Mitigates against return-to-libc style
attacks
 Requires reliably locating relevant

function(s)
 ASLR changes location of executable,

stack, heap, libraries
 pmap example

© 2017 Dr. Jeffrey A. Turkstra 30

Questions?

