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Lecture 05

 Program layout and segments
 The stack
 Calling conventions
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Program vs. process

 A program is an executable file that 
contains a set of instructions
 Usually stored on disk or other 

secondary storage
 A process is a program in execution

 It resides, at least partially, in memory



© 2017 Dr. Jeffrey A. Turkstra 4

Process memory layout
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32-bit vs 64-bit

 32-bit systems usually have shared 
libraries at the lowest address, 
followed by the text segment

 Starting addresses differ
 Text or code usually starts 0x400000 on 

64-bit, 0x8047000 on 32-bit
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Text segment

 Also called the code segment
 Contains actual program instructions 

and any statically linked libraries
 Often read only and executable

 Self-modifying code
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Data segment

 Initialized global variables and static 
strings
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Demo

 hello.c
#include <unistd.h>

int main(int argc, char *argv[])

{

  int ret = 0xbeefbeef;

  ret = write(1, "Hello\n", 6);

  return 0;

}

$ gcc -masm=intel -S hello.c
$ objdump -M intel -Dl a.out
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BSS

 Block started by segment
 Holds uninitialized global variables

 By C convention are initialized 
automatically to 0
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Heap

 Dynamically allocated memory
 i.e., obtained via malloc()

 Grows upward as memory is 
requested
 Upward → increasing addresses
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Stack

 Holds temporary, or automatic, 
variables

 Arguments passed during a function 
call

 Information needed to return to a 
previous point in the program

 Grows downward (decreasing 
addresses)
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Stack

 A stack is a very common data 
structure used in programs and 
architectures

 Stacks are generally LIFO queues
 Last in, first out

 Two operations
 PUSH – add something to the stack
 POP – retrieve the most recent item
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x86_64 hardware support

 RBP, base pointer
 RSP, stack pointer, points to next 

available address
 PUSH and POP instructions

 Automatically decrement/increment RSP 
by 8
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Function calls

 CALL
 RET
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Base pointer

 Represents currently active region of 
the stack

 Used in combination with an offset to 
reference all local variables
 Accesses are relative to RBP

 RBP updated any time a function is 
called or returns
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Stack frame

 Frame is pushed on function call
 Popped on function return
 Contains data for function calls

 Parameters
 Return address
 Return value
 Automatic (local) variables

 Structure is defined by calling 
convention
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General stack frame 
layout
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Stack frames form a 
linked list

 RBP always points to the start of the 
previous stack frame
 Which contains. … the previous RBP
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Register preservation

 Functions share one set of registers
 Calling convention dictates how they 

are shared
 Caller-saved: the calling function is 

responsible for saving them
void foo() {
  // push regs
  bar();
  // pop regs
}
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 Callee-saved: the called function is 
responsible for saving and restoring

void bar() {
  // push regs
  do_things;
  // restore regs
  return;
}
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Calling conventions

 Dictate how registers are shared
 How the stack is managed when a 

function is called
 Return address location
 RBP, etc

 Also dictate how a process interacts 
with the kernel
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cdecl - “C declaration”

 Function parameters pushed onto 
stack right to left

 RAX for (primitive) return values
 Caller-saved stack 
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General stack frame 
layout again



© 2017 Dr. Jeffrey A. Turkstra 24

How did we get here?

 Arguments to func1() were pushed 
onto the stack

 func1() was called
 RBP was pushed onto the stack
 RSP was moved to RBP
 Space for local variables was 

allocated
 Local variables set to initial values

 If provided
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Interacting with the 
kernel
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System V AMD64 ABI

 Used on Solaris, Linux, FreeBSD, and 
macOS

 RDI, RSI, RDX, RCX, R8, and R9
 integer or pointer arguments
 R10 instead of RCX for kernel

 XMM0-7
 Floating point

 Additional arguments on the stack
 Return value in RAX and RDX
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 Callee must save and restore RBP, 
RBX, R12-R15 if used
 Not for system calls

 Lots of details
 http://refspecs.linuxbase.org/elf/x86-64-

abi-0.99.pdf
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Example
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Questions?
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