
© 2017 Dr. Jeffrey A. Turkstra 1

CS 50011: Introduction to Systems IICS 50011: Introduction to Systems II

Lecture 4: Programs and ProcessesLecture 4: Programs and Processes

Prof. Jeff TurkstraProf. Jeff Turkstra

© 2017 Dr. Jeffrey A. Turkstra 2

Lecture 05

 Program layout and segments
 The stack
 Calling conventions

© 2017 Dr. Jeffrey A. Turkstra 3

Program vs. process

 A program is an executable file that
contains a set of instructions
 Usually stored on disk or other

secondary storage
 A process is a program in execution

 It resides, at least partially, in memory

© 2017 Dr. Jeffrey A. Turkstra 4

Process memory layout

© 2017 Dr. Jeffrey A. Turkstra 5

32-bit vs 64-bit

 32-bit systems usually have shared
libraries at the lowest address,
followed by the text segment

 Starting addresses differ
 Text or code usually starts 0x400000 on

64-bit, 0x8047000 on 32-bit

© 2017 Dr. Jeffrey A. Turkstra 6

Text segment

 Also called the code segment
 Contains actual program instructions

and any statically linked libraries
 Often read only and executable

 Self-modifying code

© 2017 Dr. Jeffrey A. Turkstra 7

Data segment

 Initialized global variables and static
strings

© 2017 Dr. Jeffrey A. Turkstra 8

Demo

 hello.c
#include <unistd.h>

int main(int argc, char *argv[])

{

 int ret = 0xbeefbeef;

 ret = write(1, "Hello\n", 6);

 return 0;

}

$ gcc -masm=intel -S hello.c
$ objdump -M intel -Dl a.out

© 2017 Dr. Jeffrey A. Turkstra 9

BSS

 Block started by segment
 Holds uninitialized global variables

 By C convention are initialized
automatically to 0

© 2017 Dr. Jeffrey A. Turkstra 10

Heap

 Dynamically allocated memory
 i.e., obtained via malloc()

 Grows upward as memory is
requested
 Upward → increasing addresses

© 2017 Dr. Jeffrey A. Turkstra 11

Stack

 Holds temporary, or automatic,
variables

 Arguments passed during a function
call

 Information needed to return to a
previous point in the program

 Grows downward (decreasing
addresses)

© 2017 Dr. Jeffrey A. Turkstra 12

Stack

 A stack is a very common data
structure used in programs and
architectures

 Stacks are generally LIFO queues
 Last in, first out

 Two operations
 PUSH – add something to the stack
 POP – retrieve the most recent item

© 2017 Dr. Jeffrey A. Turkstra 13

x86_64 hardware support

 RBP, base pointer
 RSP, stack pointer, points to next

available address
 PUSH and POP instructions

 Automatically decrement/increment RSP
by 8

© 2017 Dr. Jeffrey A. Turkstra 14

Function calls

 CALL
 RET

© 2017 Dr. Jeffrey A. Turkstra 15

Base pointer

 Represents currently active region of
the stack

 Used in combination with an offset to
reference all local variables
 Accesses are relative to RBP

 RBP updated any time a function is
called or returns

© 2017 Dr. Jeffrey A. Turkstra 16

Stack frame

 Frame is pushed on function call
 Popped on function return
 Contains data for function calls

 Parameters
 Return address
 Return value
 Automatic (local) variables

 Structure is defined by calling
convention

© 2017 Dr. Jeffrey A. Turkstra 17

General stack frame
layout

© 2017 Dr. Jeffrey A. Turkstra 18

Stack frames form a
linked list

 RBP always points to the start of the
previous stack frame
 Which contains. … the previous RBP

© 2017 Dr. Jeffrey A. Turkstra 19

Register preservation

 Functions share one set of registers
 Calling convention dictates how they

are shared
 Caller-saved: the calling function is

responsible for saving them
void foo() {
 // push regs
 bar();
 // pop regs
}

© 2017 Dr. Jeffrey A. Turkstra 20

 Callee-saved: the called function is
responsible for saving and restoring

void bar() {
 // push regs
 do_things;
 // restore regs
 return;
}

© 2017 Dr. Jeffrey A. Turkstra 21

Calling conventions

 Dictate how registers are shared
 How the stack is managed when a

function is called
 Return address location
 RBP, etc

 Also dictate how a process interacts
with the kernel

© 2017 Dr. Jeffrey A. Turkstra 22

cdecl - “C declaration”

 Function parameters pushed onto
stack right to left

 RAX for (primitive) return values
 Caller-saved stack

© 2017 Dr. Jeffrey A. Turkstra 23

General stack frame
layout again

© 2017 Dr. Jeffrey A. Turkstra 24

How did we get here?

 Arguments to func1() were pushed
onto the stack

 func1() was called
 RBP was pushed onto the stack
 RSP was moved to RBP
 Space for local variables was

allocated
 Local variables set to initial values

 If provided

© 2017 Dr. Jeffrey A. Turkstra 25

Interacting with the
kernel

© 2017 Dr. Jeffrey A. Turkstra 26

System V AMD64 ABI

 Used on Solaris, Linux, FreeBSD, and
macOS

 RDI, RSI, RDX, RCX, R8, and R9
 integer or pointer arguments
 R10 instead of RCX for kernel

 XMM0-7
 Floating point

 Additional arguments on the stack
 Return value in RAX and RDX

© 2017 Dr. Jeffrey A. Turkstra 27

 Callee must save and restore RBP,
RBX, R12-R15 if used
 Not for system calls

 Lots of details
 http://refspecs.linuxbase.org/elf/x86-64-

abi-0.99.pdf

© 2017 Dr. Jeffrey A. Turkstra 28

Example

© 2017 Dr. Jeffrey A. Turkstra 29

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

