
© 2017 Dr. Jeffrey A. Turkstra 1

CS 50011: Introduction to Systems IICS 50011: Introduction to Systems II

Lecture 4: Programs and ProcessesLecture 4: Programs and Processes

Prof. Jeff TurkstraProf. Jeff Turkstra

© 2017 Dr. Jeffrey A. Turkstra 2

Lecture 05

 Program layout and segments
 The stack
 Calling conventions

© 2017 Dr. Jeffrey A. Turkstra 3

Program vs. process

 A program is an executable file that
contains a set of instructions
 Usually stored on disk or other

secondary storage
 A process is a program in execution

 It resides, at least partially, in memory

© 2017 Dr. Jeffrey A. Turkstra 4

Process memory layout

© 2017 Dr. Jeffrey A. Turkstra 5

32-bit vs 64-bit

 32-bit systems usually have shared
libraries at the lowest address,
followed by the text segment

 Starting addresses differ
 Text or code usually starts 0x400000 on

64-bit, 0x8047000 on 32-bit

© 2017 Dr. Jeffrey A. Turkstra 6

Text segment

 Also called the code segment
 Contains actual program instructions

and any statically linked libraries
 Often read only and executable

 Self-modifying code

© 2017 Dr. Jeffrey A. Turkstra 7

Data segment

 Initialized global variables and static
strings

© 2017 Dr. Jeffrey A. Turkstra 8

Demo

 hello.c
#include <unistd.h>

int main(int argc, char *argv[])

{

 int ret = 0xbeefbeef;

 ret = write(1, "Hello\n", 6);

 return 0;

}

$ gcc -masm=intel -S hello.c
$ objdump -M intel -Dl a.out

© 2017 Dr. Jeffrey A. Turkstra 9

BSS

 Block started by segment
 Holds uninitialized global variables

 By C convention are initialized
automatically to 0

© 2017 Dr. Jeffrey A. Turkstra 10

Heap

 Dynamically allocated memory
 i.e., obtained via malloc()

 Grows upward as memory is
requested
 Upward → increasing addresses

© 2017 Dr. Jeffrey A. Turkstra 11

Stack

 Holds temporary, or automatic,
variables

 Arguments passed during a function
call

 Information needed to return to a
previous point in the program

 Grows downward (decreasing
addresses)

© 2017 Dr. Jeffrey A. Turkstra 12

Stack

 A stack is a very common data
structure used in programs and
architectures

 Stacks are generally LIFO queues
 Last in, first out

 Two operations
 PUSH – add something to the stack
 POP – retrieve the most recent item

© 2017 Dr. Jeffrey A. Turkstra 13

x86_64 hardware support

 RBP, base pointer
 RSP, stack pointer, points to next

available address
 PUSH and POP instructions

 Automatically decrement/increment RSP
by 8

© 2017 Dr. Jeffrey A. Turkstra 14

Function calls

 CALL
 RET

© 2017 Dr. Jeffrey A. Turkstra 15

Base pointer

 Represents currently active region of
the stack

 Used in combination with an offset to
reference all local variables
 Accesses are relative to RBP

 RBP updated any time a function is
called or returns

© 2017 Dr. Jeffrey A. Turkstra 16

Stack frame

 Frame is pushed on function call
 Popped on function return
 Contains data for function calls

 Parameters
 Return address
 Return value
 Automatic (local) variables

 Structure is defined by calling
convention

© 2017 Dr. Jeffrey A. Turkstra 17

General stack frame
layout

© 2017 Dr. Jeffrey A. Turkstra 18

Stack frames form a
linked list

 RBP always points to the start of the
previous stack frame
 Which contains. … the previous RBP

© 2017 Dr. Jeffrey A. Turkstra 19

Register preservation

 Functions share one set of registers
 Calling convention dictates how they

are shared
 Caller-saved: the calling function is

responsible for saving them
void foo() {
 // push regs
 bar();
 // pop regs
}

© 2017 Dr. Jeffrey A. Turkstra 20

 Callee-saved: the called function is
responsible for saving and restoring

void bar() {
 // push regs
 do_things;
 // restore regs
 return;
}

© 2017 Dr. Jeffrey A. Turkstra 21

Calling conventions

 Dictate how registers are shared
 How the stack is managed when a

function is called
 Return address location
 RBP, etc

 Also dictate how a process interacts
with the kernel

© 2017 Dr. Jeffrey A. Turkstra 22

cdecl - “C declaration”

 Function parameters pushed onto
stack right to left

 RAX for (primitive) return values
 Caller-saved stack

© 2017 Dr. Jeffrey A. Turkstra 23

General stack frame
layout again

© 2017 Dr. Jeffrey A. Turkstra 24

How did we get here?

 Arguments to func1() were pushed
onto the stack

 func1() was called
 RBP was pushed onto the stack
 RSP was moved to RBP
 Space for local variables was

allocated
 Local variables set to initial values

 If provided

© 2017 Dr. Jeffrey A. Turkstra 25

Interacting with the
kernel

© 2017 Dr. Jeffrey A. Turkstra 26

System V AMD64 ABI

 Used on Solaris, Linux, FreeBSD, and
macOS

 RDI, RSI, RDX, RCX, R8, and R9
 integer or pointer arguments
 R10 instead of RCX for kernel

 XMM0-7
 Floating point

 Additional arguments on the stack
 Return value in RAX and RDX

© 2017 Dr. Jeffrey A. Turkstra 27

 Callee must save and restore RBP,
RBX, R12-R15 if used
 Not for system calls

 Lots of details
 http://refspecs.linuxbase.org/elf/x86-64-

abi-0.99.pdf

© 2017 Dr. Jeffrey A. Turkstra 28

Example

© 2017 Dr. Jeffrey A. Turkstra 29

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

