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Lecture 05

 Program layout and segments
 The stack
 Calling conventions
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Program vs. process

 A program is an executable file that 
contains a set of instructions
 Usually stored on disk or other 

secondary storage
 A process is a program in execution

 It resides, at least partially, in memory
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Process memory layout
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32-bit vs 64-bit

 32-bit systems usually have shared 
libraries at the lowest address, 
followed by the text segment

 Starting addresses differ
 Text or code usually starts 0x400000 on 

64-bit, 0x8047000 on 32-bit
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Text segment

 Also called the code segment
 Contains actual program instructions 

and any statically linked libraries
 Often read only and executable

 Self-modifying code
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Data segment

 Initialized global variables and static 
strings
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Demo

 hello.c
#include <unistd.h>

int main(int argc, char *argv[])

{

  int ret = 0xbeefbeef;

  ret = write(1, "Hello\n", 6);

  return 0;

}

$ gcc -masm=intel -S hello.c
$ objdump -M intel -Dl a.out
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BSS

 Block started by segment
 Holds uninitialized global variables

 By C convention are initialized 
automatically to 0
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Heap

 Dynamically allocated memory
 i.e., obtained via malloc()

 Grows upward as memory is 
requested
 Upward → increasing addresses
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Stack

 Holds temporary, or automatic, 
variables

 Arguments passed during a function 
call

 Information needed to return to a 
previous point in the program

 Grows downward (decreasing 
addresses)
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Stack

 A stack is a very common data 
structure used in programs and 
architectures

 Stacks are generally LIFO queues
 Last in, first out

 Two operations
 PUSH – add something to the stack
 POP – retrieve the most recent item



© 2017 Dr. Jeffrey A. Turkstra 13

x86_64 hardware support

 RBP, base pointer
 RSP, stack pointer, points to next 

available address
 PUSH and POP instructions

 Automatically decrement/increment RSP 
by 8
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Function calls

 CALL
 RET
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Base pointer

 Represents currently active region of 
the stack

 Used in combination with an offset to 
reference all local variables
 Accesses are relative to RBP

 RBP updated any time a function is 
called or returns
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Stack frame

 Frame is pushed on function call
 Popped on function return
 Contains data for function calls

 Parameters
 Return address
 Return value
 Automatic (local) variables

 Structure is defined by calling 
convention
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General stack frame 
layout
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Stack frames form a 
linked list

 RBP always points to the start of the 
previous stack frame
 Which contains. … the previous RBP
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Register preservation

 Functions share one set of registers
 Calling convention dictates how they 

are shared
 Caller-saved: the calling function is 

responsible for saving them
void foo() {
  // push regs
  bar();
  // pop regs
}
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 Callee-saved: the called function is 
responsible for saving and restoring

void bar() {
  // push regs
  do_things;
  // restore regs
  return;
}
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Calling conventions

 Dictate how registers are shared
 How the stack is managed when a 

function is called
 Return address location
 RBP, etc

 Also dictate how a process interacts 
with the kernel
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cdecl - “C declaration”

 Function parameters pushed onto 
stack right to left

 RAX for (primitive) return values
 Caller-saved stack 
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General stack frame 
layout again
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How did we get here?

 Arguments to func1() were pushed 
onto the stack

 func1() was called
 RBP was pushed onto the stack
 RSP was moved to RBP
 Space for local variables was 

allocated
 Local variables set to initial values

 If provided
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Interacting with the 
kernel
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System V AMD64 ABI

 Used on Solaris, Linux, FreeBSD, and 
macOS

 RDI, RSI, RDX, RCX, R8, and R9
 integer or pointer arguments
 R10 instead of RCX for kernel

 XMM0-7
 Floating point

 Additional arguments on the stack
 Return value in RAX and RDX
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 Callee must save and restore RBP, 
RBX, R12-R15 if used
 Not for system calls

 Lots of details
 http://refspecs.linuxbase.org/elf/x86-64-

abi-0.99.pdf
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Example
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Questions?
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