

© 2017 Dr. Jeffrey A. Turkstra 1

CS 50011: Introduction to Systems IICS 50011: Introduction to Systems II

Lecture 4: Programs and ProcessesLecture 4: Programs and Processes

Prof. Jeff TurkstraProf. Jeff Turkstra

© 2017 Dr. Jeffrey A. Turkstra 2

Lecture 05

 Program layout and segments
 The stack
 Calling conventions

© 2017 Dr. Jeffrey A. Turkstra 3

Program vs. process

 A program is an executable file that
contains a set of instructions
 Usually stored on disk or other

secondary storage
 A process is a program in execution

 It resides, at least partially, in memory

© 2017 Dr. Jeffrey A. Turkstra 4

Process memory layout

© 2017 Dr. Jeffrey A. Turkstra 5

32-bit vs 64-bit

 32-bit systems usually have shared
libraries at the lowest address,
followed by the text segment

 Starting addresses differ
 Text or code usually starts 0x400000 on

64-bit, 0x8047000 on 32-bit

© 2017 Dr. Jeffrey A. Turkstra 6

Text segment

 Also called the code segment
 Contains actual program instructions

and any statically linked libraries
 Often read only and executable

 Self-modifying code

© 2017 Dr. Jeffrey A. Turkstra 7

Data segment

 Initialized global variables and static
strings

© 2017 Dr. Jeffrey A. Turkstra 8

Demo

 hello.c
#include <unistd.h>

int main(int argc, char *argv[])

{

 int ret = 0xbeefbeef;

 ret = write(1, "Hello\n", 6);

 return 0;

}

$ gcc -masm=intel -S hello.c
$ objdump -M intel -Dl a.out

© 2017 Dr. Jeffrey A. Turkstra 9

BSS

 Block started by segment
 Holds uninitialized global variables

 By C convention are initialized
automatically to 0

© 2017 Dr. Jeffrey A. Turkstra 10

Heap

 Dynamically allocated memory
 i.e., obtained via malloc()

 Grows upward as memory is
requested
 Upward → increasing addresses

© 2017 Dr. Jeffrey A. Turkstra 11

Stack

 Holds temporary, or automatic,
variables

 Arguments passed during a function
call

 Information needed to return to a
previous point in the program

 Grows downward (decreasing
addresses)

© 2017 Dr. Jeffrey A. Turkstra 12

Stack

 A stack is a very common data
structure used in programs and
architectures

 Stacks are generally LIFO queues
 Last in, first out

 Two operations
 PUSH – add something to the stack
 POP – retrieve the most recent item

© 2017 Dr. Jeffrey A. Turkstra 13

x86_64 hardware support

 RBP, base pointer
 RSP, stack pointer, points to next

available address
 PUSH and POP instructions

 Automatically decrement/increment RSP
by 8

© 2017 Dr. Jeffrey A. Turkstra 14

Function calls

 CALL
 RET

© 2017 Dr. Jeffrey A. Turkstra 15

Base pointer

 Represents currently active region of
the stack

 Used in combination with an offset to
reference all local variables
 Accesses are relative to RBP

 RBP updated any time a function is
called or returns

© 2017 Dr. Jeffrey A. Turkstra 16

Stack frame

 Frame is pushed on function call
 Popped on function return
 Contains data for function calls

 Parameters
 Return address
 Return value
 Automatic (local) variables

 Structure is defined by calling
convention

© 2017 Dr. Jeffrey A. Turkstra 17

General stack frame
layout

© 2017 Dr. Jeffrey A. Turkstra 18

Stack frames form a
linked list

 RBP always points to the start of the
previous stack frame
 Which contains. … the previous RBP

© 2017 Dr. Jeffrey A. Turkstra 19

Register preservation

 Functions share one set of registers
 Calling convention dictates how they

are shared
 Caller-saved: the calling function is

responsible for saving them
void foo() {
 // push regs
 bar();
 // pop regs
}

© 2017 Dr. Jeffrey A. Turkstra 20

 Callee-saved: the called function is
responsible for saving and restoring

void bar() {
 // push regs
 do_things;
 // restore regs
 return;
}

© 2017 Dr. Jeffrey A. Turkstra 21

Calling conventions

 Dictate how registers are shared
 How the stack is managed when a

function is called
 Return address location
 RBP, etc

 Also dictate how a process interacts
with the kernel

© 2017 Dr. Jeffrey A. Turkstra 22

cdecl - “C declaration”

 Function parameters pushed onto
stack right to left

 RAX for (primitive) return values
 Caller-saved stack

© 2017 Dr. Jeffrey A. Turkstra 23

General stack frame
layout again

© 2017 Dr. Jeffrey A. Turkstra 24

How did we get here?

 Arguments to func1() were pushed
onto the stack

 func1() was called
 RBP was pushed onto the stack
 RSP was moved to RBP
 Space for local variables was

allocated
 Local variables set to initial values

 If provided

© 2017 Dr. Jeffrey A. Turkstra 25

Interacting with the
kernel

© 2017 Dr. Jeffrey A. Turkstra 26

System V AMD64 ABI

 Used on Solaris, Linux, FreeBSD, and
macOS

 RDI, RSI, RDX, RCX, R8, and R9
 integer or pointer arguments
 R10 instead of RCX for kernel

 XMM0-7
 Floating point

 Additional arguments on the stack
 Return value in RAX and RDX

© 2017 Dr. Jeffrey A. Turkstra 27

 Callee must save and restore RBP,
RBX, R12-R15 if used
 Not for system calls

 Lots of details
 http://refspecs.linuxbase.org/elf/x86-64-

abi-0.99.pdf

© 2017 Dr. Jeffrey A. Turkstra 28

Example

© 2017 Dr. Jeffrey A. Turkstra 29

Questions?

