

© 2017 Dr. Jeffrey A. Turkstra 1

CS 50011: Introduction to Systems IICS 50011: Introduction to Systems II

Lecture 4: Introduction to AssemblyLecture 4: Introduction to Assembly

Prof. Jeff TurkstraProf. Jeff Turkstra

© 2017 Dr. Jeffrey A. Turkstra 2

Lecture 03

 History
 Background
 x86

 Syntax
 Operands
 Addressing modes
 Data types
 Instructions

© 2017 Dr. Jeffrey A. Turkstra 3

A software hierarchy

Java, Pascal, FORTRAN, etc.Java, Pascal, FORTRAN, etc.

C C

VAXVAX

Variable length

bit strings

Variable length

bit strings

X86X86

Variable length

bit strings

Variable length

bit strings

MIPSMIPS

32- & 64-bit

strings

32- & 64-bit

strings

ARMARM

32- & 64-bit

strings

32- & 64-bit

strings

……

……

Assembly languages: a distinct one for each computer,
hardware dependence, just a few abstractions

Portable among different computers with some effort;
some machine-dependent features are visible; performance

Machine languages: one per computer; NO abstractions

© 2017 Dr. Jeffrey A. Turkstra 4

Assembly language
 All (somewhat) different
 Many assembly languages share the same

fundamental structure
 Why?

 Typical assembly language statement syntax
and corresponding machine code in hex…

label: op result, operand1, operand2
0x004005F9 0x23CC803C

 Label is symbolic (an abstraction) for a
memory address

 “op” is a mnemonic for the operation

© 2017 Dr. Jeffrey A. Turkstra 5

Assembly is two-pass

 Initial pass of assembler resolves
memory addresses for all labels
 Even (especially) forward references
 Symbol table

 Second pass emits machine code
bitstrings
 Translates mnemonics, register names,

etc
 Uses symbol table to fill in offset bit field

 Offset = branch_target - current_addr
© 2017 Dr. Jeffrey A. Turkstra 6

Why?

 Many languages are one-pass
 C, for example

 Have to prototype functions, declare/define

 Would have to manually determine
instruction addresses and branch
targets

 Changing the code often changes all
of the offsets and addresses

 Impractical

© 2017 Dr. Jeffrey A. Turkstra 7

Opcodes

 Set of opcode-field bit strings defines what
the processor circuit can do

 Different processors have different sets of
opcodes

 Assembly language defines a memorable
symbolic name of a few characters for each
opcode, a mnemonic

 No agreement on opcode mnemonics
across assembly languages

© 2017 Dr. Jeffrey A. Turkstra 8

Readability

 Assembly is easy to write but hard to
follow

 Comments are essential
 Block comment – explain the purpose of a

section of code, detail the use of registers
and memory

 Line comment – explains each instruction
 Comment usually starts with a delimiter,

runs to end of line
 Best strategy: comment every line

© 2017 Dr. Jeffrey A. Turkstra 9

Example
###
Search linked list of free memory blocks to find
a block of size N bytes or greater. Pointer must

be in r3 and N in r4. Code destroys contents of

r5, which is used to walk the list.

###
 ld r5,r3 # load address of list into r5

loop_1: cmp r5,0 # test to see if at list end

 bz notfnd # if reached end go to notfnd

Coding IF-THEN-ELSE in assembly

10

Create else part →

Do not fall through to else part →

Symbolic else →
part start

Fall through beyond else →

“Fall through” means to fetch at the default next instruction
location; must code two exceptions for if-then-else

© 2017 by George B. Adams III
Portions © 2017 Dr. Jeffrey A. Turkstra

Subroutine call in assembly

11

Subroutine name becomes, in assembly, just
a label, a symbol for the address of the first
instruction of the subroutine

Instruction to pop the saved
current_instruction_pointer
from the stack and override
default_next_instruction

Instruction to push the
current_instruction_pointer
onto the stack and override
default_next_instruction
computation

Call x();

© 2017 by George B. Adams III

Portions © 2017 Dr. Jeffrey A. Turkstra © 2017 Dr. Jeffrey A. Turkstra 12

Language specifics

 Documentation
 Operand order
 Register naming
 Syntax

 Immediate values, register values, memory,
etc

 Assembly language does not provide
any program control structures, nor
enforce any coding style

© 2017 Dr. Jeffrey A. Turkstra 13

Intel documentation

 Volume 1: Basic Architecture
 482 pages
 19 Chapters
 Includes basic execution environment as

well as summary of instructions
 Groups instructions for programming

 MMX, SIMD, SSE, etc

© 2017 Dr. Jeffrey A. Turkstra 14

 Volume 2: Instruction Set Reference
A-Z
 2234 pages
 “Only” 6 chapters
 Instruction format
 All of the instructions
 Safer Mode Extensions

© 2017 Dr. Jeffrey A. Turkstra 15

 Volume 3: System Programming
Guide
 1660 pages
 43 Chapters
 Everything the hardware does to support

an OS and how to use it

© 2017 Dr. Jeffrey A. Turkstra 16

CPUs have errata

 Ever hear of the original Pentium
floating point bug?
 Could have been errata, but the press

picked it up
 Ever find a compiler error?
 Imagine finding a hardware error

 Probably involves premature baldness
 Possibly temporary

© 2017 Dr. Jeffrey A. Turkstra 17

x86 Assembly

 Unfortunately, x86 is arguably the
most complex assembly language
around
 MOV is even Turing complete

 Exposure to most common
instructions
 Focus on ability to read assembled C

programs
 Maybe a little writing

 Differences with x86_64
© 2017 Dr. Jeffrey A. Turkstra 18

The Intel Legacy

 Started with 4004
 4-bit processor

 8086, first x86 CPU
 16-bits
 June 8, 1978
 5MHz, 8MHz, and 10MHz

 80186, 80286
 80386 (SX/DX), 80486

(SX/DX/DX2/etc)

© 2017 Dr. Jeffrey A. Turkstra 19

Pentium

 MMX
 SSE, SSE2, SSE3
 X86-64
 AMD-V
 Intel VT-x
 etc
 …and it’s all backwards compatible

© 2017 Dr. Jeffrey A. Turkstra 20

Fortunately

 Some analyses claim only 14
instructions account for 90% of
compiled code

© 2017 Dr. Jeffrey A. Turkstra 21

Assembly is symbolic

 label: mnemonic arg1, arg2, arg3
 Zero to three args
 Right is source, left is destination

 Mnemonic may represent different
(multiple) opcodes

© 2017 Dr. Jeffrey A. Turkstra 22

Remember

© 2017 Dr. Jeffrey A. Turkstra 23

64-bit prefix ordering

© 2017 Dr. Jeffrey A. Turkstra 24

mov rcx,0x4004e0
48 c7 c1 e0 04 40 00
48: REX.W prefix: 64-bit operand
c7: MOV
c1: ecx (but really rcx)
e0044000: 004004e0

© 2017 Dr. Jeffrey A. Turkstra 25

REX prefix

© 2017 Dr. Jeffrey A. Turkstra 26

Wat?

© 2017 Dr. Jeffrey A. Turkstra 27

Syntax

 Intel
 [base + index*scale + disp]

call DWORD PTR [rbx+rsi*4-0xe8]
mov rax, DWORD PTR [rbp+0x8]
lea rax, [rbx-0xe8]

 AT&T
 disp(base, index, scale)

call *-0xe8(%rbx,%rsi,4)
mov 0x8(%rbp), %rax
lea -0xe8(%rbx), %rax

© 2017 Dr. Jeffrey A. Turkstra 28

Intel vs. AT&T syntax

 Intel
 Destination comes first

mov rbp, rsp
add rax, 0x14

 AT&T
 Reverse

mov %rsp, %rbp
add $0x14, %rsp

 Registers prefixed with %, immediate $

© 2017 Dr. Jeffrey A. Turkstra 29

Registers
 EIP/RIP
 (E|R)[ABCD]X

 A: Accumulator
 B: Base
 C: Counter
 D: Data

 ESI, EDI: source and destination pointers for
string operations
 Based off DS in compatibility mode

 ESP, EBP
 SS segment

© 2017 Dr. Jeffrey A. Turkstra 30

EFLAGS/RFLAGS

© 2017 Dr. Jeffrey A. Turkstra 31 © 2017 Dr. Jeffrey A. Turkstra 32

Operand Addressing

 Data for a source operand can be
found in…
 The instruction itself (immediate)
 A register
 A memory location
 An I/O port

 A destination operand can be:
 A register
 A memory location
 An I/O port

© 2017 Dr. Jeffrey A. Turkstra 33

Immediate operands

 Example: ADD EAX, 14

 All arithmetic instructions permit an
immediate source operand.

 Max value varies, never larger than
an unsigned doubleword integer (232)

© 2017 Dr. Jeffrey A. Turkstra 34

Register operands

 64-bit general-purpose registers:
 RAX, RBX, RCX, RDX, RSI, RDI, RSP,

RBP, R8-R15
 32-bit general-purpose registers:

 EAX, EBX, ECX, EDX, ESI, EDI, ESP,
EBP, R8D-R15D

 16-bit general-purpose registers
 8-bit general-purpose registers
 Segment registers

© 2017 Dr. Jeffrey A. Turkstra 35

 RFLAGS
 FPU registers
 MMX, XMM, Control, Debug, and

MSR registers
 RDX:RAX register pair (128-bit

operand)

© 2017 Dr. Jeffrey A. Turkstra 36

Memory operands

 Segment selector and offset

 64-bit mode segmentation is generally
disabled (flat 64-bit linear address space)
 CS, DS, ES, SS are 0
 FS and GS can be used as additional base

registers

© 2017 Dr. Jeffrey A. Turkstra 37

Memory offset

 Displacement: 8, 16, or 32-bits
 Direct, static value

 Base and Index
 Values from general-purpose registers

 Scale factor
 2, 4, or 8
 Multiplies Index

 RIP + Displacement
 Result is called an effective address

© 2017 Dr. Jeffrey A. Turkstra 38

64-bit prefix ordering

© 2017 Dr. Jeffrey A. Turkstra 39

SIB?

 Scale
 Index
 Base

© 2017 Dr. Jeffrey A. Turkstra 40

Effective address
computation

© 2017 Dr. Jeffrey A. Turkstra 41

Data types

© 2017 Dr. Jeffrey A. Turkstra 42

LEA
 LEA, the only instruction that performs memory

addressing calculations but doesn't actually
address memory. LEA accepts a standard memory
addressing operand, but does nothing more than
store the calculated memory offset in the specified
register, which may be any general purpose
register.

 What does that give us? Two things that ADD
doesn't provide:
 the ability to perform addition with either two

or three operands, and
 the ability to store the result in any register;

not just one of the source operands.

© 2017 Dr. Jeffrey A. Turkstra 43

What about 32-bits

 Many systems now are x86_64
 BUT, they can run a lot of 32-bit

software
 “Compatibility mode”
 Segment registers actually matter
 Relies on 32-bit registers/addresses/etc

 x86_64 CPUs can switch in and out of
compatibility mode with ease
 Consider system calls for a 64-bit kernel

running a 32-bit program
© 2017 Dr. Jeffrey A. Turkstra 44

Instruction set

 Data transfer instructions
 Binary arithmetic
 Decimal arithmetic
 Logical
 Shift and rotate
 Bit and byte
 Control
 String

© 2017 Dr. Jeffrey A. Turkstra 45

 Flag control ([ER]FLAG)
 Segment registers
 Miscellaneous

© 2017 Dr. Jeffrey A. Turkstra 46

Data transfer instructions

 Move data between memory and
registers
 Can be conditional
 Includes stack access

 CMOV and friends
 XCHG
 BSWAP
 PUSH, PUSHA
 POP, POPA

© 2017 Dr. Jeffrey A. Turkstra 47

MOV

 Register to register
 Memory to register
 Register to Memory
 Never memory to memory

 Remember DMA?

© 2017 Dr. Jeffrey A. Turkstra 48

Binary arithmetic
instructions

 Basic binary integer computations
 ADD
 SUB
 IMUL, IDIV
 MUL, DIV
 INC, DEC, NEG
 CMP

© 2017 Dr. Jeffrey A. Turkstra 49

Decimal arithmetic
instructions

 Manipulate BCD data
 Invalid in 64-bit mode

© 2017 Dr. Jeffrey A. Turkstra 50

Logical, shift and rotate
instructions

 AND, OR, XOR, NOT
 SAR, SHR, SAL, SHL
 ROR, ROL, RCR, RCL

© 2017 Dr. Jeffrey A. Turkstra 51

Bit and byte instructions

 BT
 BTS, BTR

 Semaphores
 SETE, SETZ and friends
 TEST
 CRC32, POPCNT

© 2017 Dr. Jeffrey A. Turkstra 52

Control transfer
instructions

 JMP
 JE, JZ, JNE, JNZ
 CALL, RET
 INT, IRET
 ENTER, LEAVE

© 2017 Dr. Jeffrey A. Turkstra 53

String instructions

 MOVS, MOVSB
 B/W/D: byte, word, doubleword

 CMPS, CMPSB

© 2017 Dr. Jeffrey A. Turkstra 54

Flag control instructions

 STC, CLC
 STD, CLD
 LAHF, SAHF
 PUSHF, PUSHFD
 POPF, POPFD
 STI
 CLI

© 2017 Dr. Jeffrey A. Turkstra 55

Questions?

