UNIVERSITY
CS 50011: Introduction to Systems II

Lecture 4: Introduction to Assembly

Prof. Jeff Turkstra

©2017 Dr. Jeffrey A. Turkstra 1

Lecture 03

= History
® Background
= x86
= Syntax
= Operands
= Addressing modes
= Data types
® Instructions

©2017 Dr. Jeffrey A. Turkstra

A software hierarchy

Portable among different computers with some effort;
some machine-dependent features are visible; performance

ssembfy Tanguagesy(a distinct ong for each coryiputer,
hardware depengdence, just a ffew abstractigns
VAX X86 MIPS ARM
Machiné€\[anguages: drie per compuer; NO abstidctions
Variable length 32- & 64-bit T 32- & 64-bit

Variable length
bit strings
©2017 D, Jeffrey A. Turkstra 3

bit strings

strings strings

Assembly language

All (somewhat) different
= Many assembly languages share the same
fundamental structure
= Why?
= Typical assembly language statement syntax
and corresponding machine code in hex...
label: op result, operandl, operand2
0X004005F9 0x23CC803C
Label is symbolic (an abstraction) for a
memory address
= “op” is a mnemonic for the operation

©2017 Dr. Jeffrey A. Turkstra

Assembly is two-pass

= Initial pass of assembler resolves
memory addresses for all labels
= Even (especially) forward references
= Symbol table

= Second pass emits machine code
bitstrings
= Translates mnemonics, register names,

etc

= Uses symbol table to fill in offset bit field

m Offset = branch target - current addr

©2017 Dr. Jeffrey A. Turkstra 5

Why?

= Many languages are one-pass
= C, for example
= Have to prototype functions, declare/define
® Would have to manually determine
instruction addresses and branch
targets
® Changing the code often changes all
of the offsets and addresses

® Impractical

©2017 Dr. Jeffrey A. Turkstra

Opcodes

® Set of opcode-field bit strings defines what
the processor circuit can do

= Different processors have different sets of
opcodes

= Assembly language defines a memorable
symbolic name of a few characters for each
opcode, a mnemonic

= No agreement on opcode mnemonics
across assembly languages

Readability

= Assembly is easy to write but hard to
follow
= Comments are essential

= Block comment - explain the purpose of a
section of code, detail the use of registers
and memory

= Line comment - explains each instruction
= Comment usually starts with a delimiter,
runs to end of line

= Best strategy: comment every line

©2017 Dr. Jeffrey A. Turkstra 8

©2017 Dr. Jeffrey A. Turkstra 7
Example
Search linked list of free memory blocks to find
a block of size N bytes or greater. Pointer must
be in r3 and N in r4. Code destroys contents of
r5, which is used to walk the list.
1d r5,r3 # load address of list into r5
loop_1: cmp r5,0 # test to see if at list end
bz notfnd # if reached end go to notfnd
©2017 Dr. Jeffrey A. Turkstra 9

Coding IF-THEN-ELSE in assembly

if (condition) |{ code to test the condition and
then_part set the condition code

} else { Create else part -» (branch to labell if condition false]

[cmlc o perform then_part]

} Do not fall through to else part = |branch to label2

next statement; symbolic else — [labell:)[code for else_part]

t‘)h

Fall through beygﬁﬁéfé‘g :J code for next statement

“Fall through” means to fetch at the default next instruction
location; must code two exceptions for if-then-else

Figure 9.2 (a) An if-then-else statement used in a high-level language, and
(b) the cquivalent assembly language code.

©2017 by George B. Adams I
Portions © 2017 0. efrey A Turkstra 10

Subroutine call in assembly

>Xx0 { X:=>code for body of x
body of function x / ret < Instruction to pop the saved
St i becomes, in assembly, just current_instruction_pointer

a label, a 5\;mbol for the address of the first
instruction of the subroutine

from the stack and override
default_next_instruction

e statements, [E00]Jage
other statement; Call x{); 1code for other statement

x(); jsr x
next statement; code for next statement

Instruction to push the
(a) |current_instruction_pointer (b)
onto the stack and override
default_next_instruction
computation

Figure 9.5 (a) A declaration for procedure x and two invocations in a high-
level language, and (b) the assembly language cquivalent.

©2017 by George 8. dars
Portons © 2017 Dr.Jefrey A. Turkstra n

Language specifics

® Documentation
® Operand order
® Register naming
= Syntax

= Immediate values, register values, memory,
etc

= Assembly language does not provide
any program control structures, nor
enforce any coding style

©2017 Dr. Jeffrey A. Turkstra 12

Intel documentation

= Volume 1: Basic Architecture
® 482 pages
= 19 Chapters
= Includes basic execution environment as
well as summary of instructions

= Groups instructions for programming
= MMX, SIMD, SSE, etc

©2017 Dr. Jeffrey A. Turkstra 13

= Volume 2: Instruction Set Reference
A-Z
m 2234 pages
= “Only” 6 chapters
® Instruction format
= All of the instructions
= Safer Mode Extensions

©2017 Dr. Jeffrey A. Turkstra 14

= Volume 3: System Programming
Guide
= 1660 pages
= 43 Chapters

= Everything the hardware does to support
an OS and how to use it

©2017 Dr. Jeffrey A. Turkstra 15

CPUs have errata

m Ever hear of the original Pentium
floating point bug?
® Could have been errata, but the press
picked it up
= Ever find a compiler error?
® Imagine finding a hardware error

® Probably involves premature baldness
= Possibly temporary

©2017 Dr. Jeffrey A. Turkstra 16

x86 Assembly

= Unfortunately, x86 is arguably the
most complex assembly language
around
® MOV is even Turing complete

= Exposure to most common
instructions
= Focus on ability to read assembled C

programs

= Maybe a little writing

= Differences w1th x86 6

17 Dr. Jeffrey A. ToTkstra 7

The Intel Legacy

= Started with 4004
® 4-bit processor
= 8086, first x86 CPU
= 16-bits
= June 8, 1978
= 5MHz, 8MHz, and 10MHz
= 80186, 80286
= 80386 (SX/DX), 80486
(SX/DX/DX2/etc)

©2017 Dr. Jeffrey A. Turkstra 18

Pentium

= MMX

= SSE, SSE2, SSE3

= X86-64

= AMD-V

= Intel VI-x

m etc

= __.and it’s all backwards compatible

©2017 Dr. Jeffrey A. Turkstra 19

Fortunately
= Some analyses claim only 14

instructions account for 90% of
compiled code

©2017 Dr. Jeffrey A. Turkstra 20

Assembly is symbolic

= label: mnemonic argl, arg2, arg3
m Zero to three args
= Right is source, left is destination

= Mnemonic may represent different
(multiple) opcodes

©2017 Dr. Jeffrey A. Turkstra 21

Remember

opcode operand 1 operand 2

Figure 5.1 The general instruction format that many processors use. The op-
code at the beginning of an instruction determines exactly which
operands follow.

©2017 Dr. Jeffrey A. Turkstra 22

64-bit prefix ordering

©2017 Dr. Jeffrey A. Turkstra 23

mov rcx,0x4004e0

48 c7 cl1 e0 04 40 00

48: REX.W prefix: 64-bit operand
c7: MOV

cl: ecx (but really rcx)
e0044000: 004004e0

©2017 Dr. Jeffrey A. Turkstra 24

REX prefix

©2017 Dr. Jeffrey A. Turkstra

Wat?

©2017 Dr. Jeffrey A. Turkstra

Syntax

= [ntel

® [base + index*scale + disp]
call DWORD PTR [rbx+rsi*4-0xe8]

mov rax, DWORD PTR [rbp+0x8]
lea rax, [rbx-0xe8]

u AT&T
= disp(base, index, scale)
call *-0xe8(%rbx,%rsi,4)

mov 0x8(%rbp), Y%rax
lea -0xe8(%rbx), %rax

©2017 Dr. Jeffrey A. Turkstra

Intel vs. AT&T syntax

= [ntel

m Destination comes first
mov rbp, rsp
add rax, 0x14

= AT&T

m Reverse
mov %rsp, %rbp
add $0x14, %rsp

= Registers prefixed with %, immediate $

©2017 Dr. Jeffrey A. Turkstra

Registers

= EIP/RIP
= (E|R)[ABCDIX
= A: Accumulator
= B: Base
= C: Counter
= D: Data
= ESI, EDI: source and destination pointers for
string operations
= Based off DS in compatibility mode
= ESP, EBP
= SS segment

©2017 Dr. Jeffrey A. Turkstra

EFLAGS/RFLAGS

Figure 3-8. EFLAGS Register
©2017 Dr. Jeffrey A. Turkstra

©2017 Dr. Jeffrey A. Turkstra 31

Operand Addressing

= Data for a source operand can be
found in...
= The instruction itself (immediate)
® A register
= A memory location
= An I/O port
® A destination operand can be:
® A register
= A memory location
= An [/O port

©2017 Dr. Jeffrey A. Turkstra 32

Immediate operands

= Example: ADD EAX, 14

= All arithmetic instructions permit an
immediate source operand.

= Max value varies, never larger than
an unsigned doubleword integer (232)

©2017 Dr. Jeffrey A. Turkstra 33

Register operands

= 64-bit general-purpose registers:
= RAX, RBX, RCX, RDX, RSI, RDI, RSP,
RBP, R8-R15

= 32-bit general-purpose registers:

= EAX, EBX, ECX, EDX, ESI, EDI, ESP,
EBP, R8D-R15D

= 16-bit general-purpose registers
® 8-bit general-purpose registers
® Segment registers

©2017 Dr. Jeffrey A. Turkstra 34

= RFLAGS

= FPU registers

= MMX, XMM, Control, Debug, and
MSR registers

= RDX:RAX register pair (128-bit
operand)

©2017 Dr. Jeffrey A. Turkstra 35

Memory operands

= Segment selector and offset

= 64-bit mode segmentation is generally
disabled (flat 64-bit linear address space)
m CS, DS, ES, SS are 0

= FS and GS can be used as additional base
registers

©2017 Dr. Jeffrey A. Turkstra 36

Memory offset

= Displacement: 8, 16, or 32-bits
® Direct, static value
® Base and Index
= Values from general-purpose registers
= Scale factor
=), 4 0r8
= Multiplies Index
= RIP + Displacement
® Result is called an effective address

©2017 Dr. Jeffrey A. Turkstra 37

64-bit prefix ordering

©2017 Dr. Jeffrey A. Turkstra 38

Effective address
computation

©2017 Dr. Jeffrey A. Turkstra 40

SIB?
= Scale
= [ndex
® Base
Data types

©2017 Dr. Jeffrey A. Turkstra a

LEA

= LEA, the only instruction that performs memory
addressing calculations but doesn't actually
address memory. LEA accepts a standard memory
addressing operand, but does nothing more than
store the calculated memory offset in the specified
register, which may be any general purpose
register.
= What does that give us? Two things that ADD
doesn't provide:
= the ability to perform addition with either two
or three operands, and
= the ability to store the result in any register;
not just one of the source operands.

©2017 Dr. Jeffrey A. Turkstra 22

What about 32-bits

= Many systems now are x86_64
= BUT, they can run a lot of 32-bit
software
= “Compatibility mode”
® Segment registers actually matter
= Relies on 32-bit registers/addresses/etc
® x86_64 CPUs can switch in and out of
compatibility mode with ease
= Consider system calls for a 64-bit kernel
running a 32-bit program

©3017 Dr.Jelfrey ATurkstra a3

Instruction set

= Data transfer instructions
® Binary arithmetic

= Decimal arithmetic

® [ogical

= Shift and rotate

= Bit and byte

= Control

= String

©2017 Dr. Jeffrey A. Turkstra

= Flag control ([ER]JFLAG)
= Segment registers
= Miscellaneous

©2017 Dr. Jeffrey A. Turkstra a5

Data transfer instructions

= Move data between memory and
registers
= Can be conditional
= Includes stack access

= CMOV and friends

= XCHG

= BSWAP

= PUSH, PUSHA

= POP, POPA

©2017 Dr. Jeffrey A. Turkstra

MOV

m Register to register
= Memory to register
= Register to Memory

= Never memory to memory
= Remember DMA?

©2017 Dr. Jeffrey A. Turkstra a7

Binary arithmetic
instructions
® Basic binary integer computations
= ADD
= SUB
= IMUL, IDIV
= MUL, DIV
= INC, DEC, NEG
= CMP

©2017 Dr. Jeffrey A. Turkstra

Decimal arithmetic
instructions
= Manipulate BCD data
= [nvalid in 64-bit mode

©2017 Dr. Jeffrey A. Turkstra a9

Logical, shift and rotate
instructions
= AND, OR, XOR, NOT
® SAR, SHR, SAL, SHL
= ROR, ROL, RCR, RCL

©2017 Dr. Jeffrey A. Turkstra 50

Bit and byte instructions

= BT
= BTS, BTR
= Semaphores
® SETE, SETZ and friends
s TEST
= CRC32, POPCNT

©2017 Dr. Jefirey A Turkstra 51

Control transfer
instructions
= JMP
® JE, JZ, JNE, JNZ
» CALL, RET
= INT, IRET
= ENTER, LEAVE

©2017 Dr. Jeffrey A. Turkstra 52

String instructions

= MOVS, MOVSB
= B/W/D: byte, word, doubleword
= CMPS, CMPSB

©2017 Dr. Jeffrey A. Turkstra 53

Flag control instructions

= STC, CLC

= STD, CLD

= L AHF, SAHF

= PUSHF, PUSHFD
= POPF, POPFD

= STI

= CLI

©2017 Dr. Jeffrey A. Turkstra 54

Questions?

©2017 Dr. Jeffrey A. Turkstra

