
© 2017 Dr. Jeffrey A. Turkstra 1

CS 50011: Introduction to Systems IICS 50011: Introduction to Systems II

Lecture 3: Computer ArchitectureLecture 3: Computer Architecture

Prof. Jeff TurkstraProf. Jeff Turkstra

© 2017 Dr. Jeffrey A. Turkstra 2

Lecture 03

 Basics
 Processors
 Architecture
 ISA
 DMA
 Modes

© 2017 Dr. Jeffrey A. Turkstra 3

 Some lecture material based on:
 Slides by Dr. George B. Adams III
 Slides from Hennessy & Patterson
 Slides from Silberschatz

© 2017 Dr. Jeffrey A. Turkstra 4

Basics

 Moore’s Law for integrated circuits
 Transistor count for a typical processor

or memory chip increases 40% to 55%
per year.

 Doubles every 18-24 months
 Transistor count ~= computational

power
 1986-2003 computer performance

increased ~ 50%/year

© 2017 Dr. Jeffrey A. Turkstra 5

 25,000-fold hardware performance
improvement since 1985
 Programs today trade execution

performance for programmer
productivity

 More programming is done in managed
languages like Java, Python, and C#

 New applications have arisen: speech,
sound, images, video

© 2017 Dr. Jeffrey A. Turkstra 6

Moore’s Law since 2003

 Microprocessor performance only
20%/year
 Maximum power dissipation limits for

air-cooled chips
 Lack of additional instruction-level

parallelism for hardware to exploit

© 2017 Dr. Jeffrey A. Turkstra 7

Computer components

 Hardware
 Transistors
 Gates
 Combinational and sequential circuits
 Adders, decoders, mux/demux, latches,

flip-flops, registers
 Processors
 Memory
 etc

© 2017 Dr. Jeffrey A. Turkstra 8

 Data types
 Representations for character, integer,

floating point, etc
 more, od, xxd

 Sign-magnitude
 1’s complement
 2’s complement
 IEEE 754
 BCD
 ...

© 2017 Dr. Jeffrey A. Turkstra 9

© 2017 Dr. Jeffrey A. Turkstra 10

 Software
 Instructions for what to compute

© 2017 Dr. Jeffrey A. Turkstra 11

How a modern computer
works

© 2017 Dr. Jeffrey A. Turkstra 12

Harvard architecture

 Idea by Howard Aiken, Harvard physicist,
to IBM Nov. 1937

 Built by IBM in Endicott, NY and delivered
to Harvard in Feb. 1944 as the Mark 1
computer

 Has separate memories for program
(instructions) and data

 Input/output (I/O) to connect to the world
 Processor to carry out the computations

© 2017 Dr. Jeffrey A. Turkstra 13

Harvard

© 2017 Dr. Jeffrey A. Turkstra 14

(John) Von Neumann
architecture

 Developed during his June 1945 train
ride from Philadelphia to Los Alamos,
NM

 He had programmed the Mark 1 in
August 1944

 One memory for both data and
program

 Same I/O
 Same processor

© 2017 Dr. Jeffrey A. Turkstra 15

Von Neumann

© 2017 Dr. Jeffrey A. Turkstra 16

von Neumann vs Harvard
architectures

 von Neumann
 Same memory holds instructions and data
 Single bus between CPU and memory
 Flexible, more cost effective

 Harvard
 Separate memories for data and instructions
 Two busses
 Allows two simultaneous memory fetches
 Less flexible, memory is physically partitioned

 Both are stored program computer designs

© 2017 Dr. Jeffrey A. Turkstra 17

Processors
 Device that performs automatic computation

 Fixed logic – single operation
 Traffic signal sequencer

 Selectable logic – user can select from multiple
hardwired functions

 Car with Econo and Sports modes for transmission

 Parameterized logic – computes fixed function
on variable user input

 Programmable video recorder

 Programmable logic processor
 CPU, GPU, etc

© 2017 Dr. Jeffrey A. Turkstra 18

Stored programs

 Some memories can be written to only
once and then read many times
 Read-Only Memory (ROM)
 E.g., automobile engine control

 Some ROM can be re-written
 PROM, programmable ROM
 EPROM, erasable programmable ROM
 EEPROM, electrically erasable…

 Embedded systems often PROM
 Firmware upgrades

© 2017 Dr. Jeffrey A. Turkstra 19

Fetch-Execute

 At the highest level, a processor does
this:
repeat forever {

FETCH, access the next program
instruction from location where it is

 stored
EXECUTE, perform the actions
described by the instruction

}

© 2017 Dr. Jeffrey A. Turkstra 20

Intel Core i7 Processor

© 2017 Dr. Jeffrey A. Turkstra 21

© 2017 Dr. Jeffrey A. Turkstra 22

Motherboard

© 2017 Dr. Jeffrey A. Turkstra 23

Architecture basics

 Instruction set
 Software instructions that the hardware

executes
 Functional organization

 How is the hardware partitioned into
specialized units?

© 2017 Dr. Jeffrey A. Turkstra 24

Architecture basics

 Logic design
 Which logic circuits are used and how

are they organized?
 Implementation

 Technologies and packaging used

© 2017 Dr. Jeffrey A. Turkstra 25

Hierarchical abstraction

 Hardware and software consist of
layers in a hierarchy
 To a good approximation

 Each layer hides (some of) its detail
from the layer above
 Principal of Abstraction

 Highest layer interacts with outside
world/end user

© 2017 Dr. Jeffrey A. Turkstra 26

Instruction set
architecture

 Instruction set architecture (ISA) is a
key level of abstraction
 Primary interface between hardware and

software
 Set of operations that a processor

performs
 Instruction format defines an

interpretation of bit strings
 Similar to ASCII, 2’s complement, IEEE

754, BCD, etc

© 2017 Dr. Jeffrey A. Turkstra 27

Opcodes, operands, and
results

 A bit string, interpreted as an
instruction, specifies
 Operations to be performed
 Actual operand(s) and/or source(s) for

the operand(s) and their type(s)
 Destination for the result(s)

© 2017 Dr. Jeffrey A. Turkstra 28

© 2017 Dr. Jeffrey A. Turkstra 29

© 2017 Dr. Jeffrey A. Turkstra 30

ISA Design

 Many tradeoffs
 Instruction length
 Number of registers
 Number of instructions
 etc

© 2017 Dr. Jeffrey A. Turkstra 31

CISC vs RISC

 Complex Instruction Set Computer
 Reduced Instruction Set Computer
 RISC won

 Even Intel uses RISC micro-instructions
 They just have a really amazing instruction

decoder

© 2017 Dr. Jeffrey A. Turkstra 32

Endianness
 Imagine memory is read from lowest address to

highest address
 Big Endian

 Most significant, “big,” byte comes first. Ie, placed
in lowest numbered memory location.

 “Big” end appears first when reading memory
 Network traffic
 PowerPC, ARM, SPARC, MIPS

 Little Endian
 Reverse of Big Endian: least significant,

“Little,” byte placed in lowest address
 “Little” end first

Example and comparison

 Consider 0x00C0F380 = 0x 00 C0 F3 80 =
0b0000 0000 1100 0000 1111 0011 1000 0000

Most significant byte Least significant byte

Memory
address

Byte at given location

Little endian Big endian

0x00000000 1000 0000 0000 0000

0x00000001 1111 0000 1100 0000

0x00000002 1100 0000 1111 0011

0x00000003 0000 0000 1000 0000

Addresses
arbitrarily start
at 0x00000000;
Locations
accessed in
arrow-indicated
sequence

33

© 2017 by George B. Adams III
Portions © 2017 Dr. Jeffrey A. Turkstra

© 2017 Dr. Jeffrey A. Turkstra 34

© 2017 Dr. Jeffrey A. Turkstra 35

Memory hierarchy

© 2017 Dr. Jeffrey A. Turkstra 36

Registers

 Type of memory located inside CPU
 Can hold a single piece of data

 Data processing
 Control

 Many registers
 More later

© 2017 Dr. Jeffrey A. Turkstra 37

© 2017 Dr. Jeffrey A. Turkstra 38

Designing an ISA

© 2017 Dr. Jeffrey A. Turkstra 39

Example

Writing a program using these instructions is
programming in assembly language; example
Assembly instr. ; Comments
load r2, 20(r1) ; r2 ← Data_Memory[20+r1]
load r3, 24(r1) ; r3 ← Data_Memory[24+r1]
add r4, r2, r3 ; r4 ← r2 + r3
store r4, 28(r1) ; Data_Memory[28+r1] ← r4
jump 60(r7) ; Fetch at Instr._Memory[60+r7]
r1, r2, r3, r4 are registers in the data path
20, 24, 28 are decimal constants
“x ←” means “x” is the location for the result
Memory[x] means the contents of memory at address x
+ means addition, with operand type defined by the instruction

(r1 + r2 is add with different data type than 28+r3)

© 2017 Dr. Jeffrey A. Turkstra 40

© 2017 Dr. Jeffrey A. Turkstra 41

Assembly and its machine
code

41

Opcode PointerPointerPointer Unused offset,
 arbitrarily set all 0

© 2017 Dr. Jeffrey A. Turkstra 42

ADD

42

ADD result data path

ADD: ALU output is result, deliver to dst reg; result has
the meaning “integer” because this is an integer adder

© 2017 Dr. Jeffrey A. Turkstra 43

LOAD

43

LO
A

D
 r

es
u

lt

d
at

a
p

at
h

LOAD: ALU output is pointer that must be sent to data memory, which then
produces copy of the location contents which, finally, must be written into dst_reg;
Result is a bit string from memory: no inherent meaning at all

© 2017 Dr. Jeffrey A. Turkstra 44

STORE

44

STORE result data path

STORE: ALU output is pointer that must be sent to data memory along with
the value from reg B to be written into the data memory location; Result is a
bit string from reg_B written in memory, no inherent meaning at all

© 2017 Dr. Jeffrey A. Turkstra 45

JUMP

45

JUMP result data path

JUMP: ALU output is computed Next_instruction_pointer, must deliver to
Instruction_pointer_register; Result meaning is location of next instruction
on the execution path

© 2017 Dr. Jeffrey A. Turkstra 46

Intel Core microarchitecture
pipeline

© 2017 Dr. Jeffrey A. Turkstra 47

Direct memory access

 DMA allows other hardware
subsystems to access main memory
without going through the CPU

 Modern systems usually have DMA
controller (MMU)
 Memory address register, byte count,

control, etc
 Responsible for ensuring accesses are

properly restrained
 Attack vector

© 2017 Dr. Jeffrey A. Turkstra 48

MMU

 Responsible for “refreshing” DRAM
 Translates virtual memory addresses

to physical addresses
 Sometimes part of CPU
 Sometimes not

 Northbridge for Intel until recently
 I7/i5 have an Integrated Memory

Controller (IMC)

© 2017 Dr. Jeffrey A. Turkstra 49

Page 70

© 2017 Dr. Jeffrey A. Turkstra 50

Execution modes

 CPU hardware has several possible
modes
 At any one time, in one mode

 Modes specify
 Privilege level
 Valid instructions
 Valid memory addresses
 Size of data items
 Backwards compatibility

© 2017 Dr. Jeffrey A. Turkstra 51

Rings

© 2017 Dr. Jeffrey A. Turkstra 52

Ring -1
 Intel Active Management Technology
 Exists for other architectures as well
 Runs on the Intel Management Engine (ME)

 Isolated and protected coprocessor
 Embedded in all current Intel chipsets
 ARC core
 Out-of-band access
 Direct access to Ethernet controller

 Requires vPro-enabled CPU/Motherboard/Chipset

© 2017 Dr. Jeffrey A. Turkstra 53

Ring -1

 ...if you can exploit it, you win.
 CVE-2017-5689

 Go read about it

© 2017 Dr. Jeffrey A. Turkstra 54

Trusting trust

 Reflections on Trusting Trust
 by Ken Thompson

 Read this too

© 2017 Dr. Jeffrey A. Turkstra 55

How to change between
modes

 Automatic
 Hardware interrupts
 OS-specified handlers

 “Manual”
 Initiated by software, typically OS
 System calls, signals, and page faults
 Sometimes mode can be set by

application

© 2017 Dr. Jeffrey A. Turkstra 56

Paging and Virtual
Memory

 ...later

© 2017 Dr. Jeffrey A. Turkstra 57

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Example and comparison
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

