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m Some lecture material based on:
m Slides by Dr. George B. Adams III
m Slides from Hennessy & Patterson
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Basics

m Moore’s Law for integrated circuits

® Transistor count for a typical processor
or memory chip increases 40% to 55%

per year.

® Doubles every 18-24 months

® Transistor count ~= computational
power

m 1986-2003 computer performance
increased ~ 50%/year
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m 25,000-fold hardware performance
improvement since 1985
® Programs today trade execution

performance for programmer
productivity

® More programming is done in managed
languages like Java, Python, and C#

= New applications have arisen: speech,
sound, images, video
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Moore’s Law since 2003

m Microprocessor performance only
20%/year

" Maximum power dissipation limits for
air-cooled chips

® [.ack of additional instruction-level
parallelism for hardware to exploit
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Computer components

m Hardware
® Transistors
® Gates
= Combinational and sequential circuits

B Adders, decoders, mux/demux, latches,
flip-flops, registers

B Processors
= Memory
B etc
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m Data types
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m Representations for character, integer,
floating point, etc

® more, od, xxd
® Sign-magnitude
® ]’s complement
m 2’s complement
m [EEE 754
= BCD
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Figure 3.6 The ASCII character set. Each entry shows a hexadecimal value
and the graphical representation for printable characters and the
meaning for others.
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m Software
® [nstructions for what to compute
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How a modern computer
works

instruction execution

cycle ; ,
y instructions

and

data movement data
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Harvard architecture

®m [dea by Howard Aiken, Harvard physicist,
to IBM Nov. 1937

® Built by IBM in Endicott, NY and delivered
to Harvard in Feb. 1944 as the Mark 1
computer

®m Has separate memories for program
(instructions) and data

® Input/output (I/O) to connect to the world
B Processor to carry out the computations
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Harvard

computer

instruction
memory

processor

input/output facilities

Figure 4.1 Illustration of the Harvard architecture that uses two memories,
one to hold programs and another to store data.
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(John) Von Neumann

architecture

m Developed during his June 1945 train
ride from Philadelphia to Los Alamos,
NM

®m He had programmed the Mark 1 in
August 1944

" One memory for both data and
program

B Same I/O

B Same processor

© 2017 Dr. Jeffrey A. Turkstra 14



Von Neumann

computer

processor | I | memory

mput/output facilities

Figure 4.2 Illustration of the Von Neumann architecture. Both programs and
data can be stored in the same memory
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von Neumann vs Harvard
architectures

= von Neumann
= Same memory holds instructions and data
® Single bus between CPU and memory
® Flexible, more cost effective
" Harvard
®m Separate memories for data and instructions
= Two busses
= Allows two simultaneous memory fetches
® [ess flexible, memory is physically partitioned
® Both are stored program computer designs
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Processors

® Device that performs automatic computation
= Fixed logic - single operation
m Traffic signal sequencer

m Selectable logic - user can select from multiple
hardwired functions

®m Car with Econo and Sports modes for transmission

= Parameterized logic - computes fixed function
on variable user input

® Programmable video recorder

= Programmable logic processor
m CPU, GPU, etc

© 2017 Dr. Jeffrey A. Turkstra 17



Stored programs

® Some memories can be written to only
once and then read many times

= Read-Only Memory (ROM)
= E.g., automobile engine control
® Some ROM can be re-written
= PROM, programmable ROM
= EPROM, erasable programmable ROM
= EEPROM, electrically erasable...

" Embedded systems often PROM
" Firmware upgrades

A © 2017 Dr. Jeffrey A. Turkstra
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Fetch-Execute

m At the highest level, a processor does
this:
repeat forever {
FETCH, access the next program
iInstruction from location where it is

stored
EXECUTE, perform the actions
described by the instruction
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Intel Core i7 Processor

Intel Core i7 Processor

Logical | Logical | Logical | Logical | Logical | Logical | Logical | Logical
Proces | Proces | Proces | Proces | Proces | Proces | Proces | Proces
sor sor sor sor sor sor sor sor
L1 and L2 L1 and L2 L1 and L2 L1 and L2

Execution Engine | Execution Engine | Execution Engine | Execution Engine

Third Level Cache

QuickPath Interconnect (QPI) Interface, Integrated Memory Controller

QPI L2 I I I

DDR3

Chipset
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Architecture basics

B [nstruction set

m Software instructions that the hardware
executes

®m Functional organization

® How is the hardware partitioned into
specialized units?
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Architecture basics

m [.ogic design
® Which logic circuits are used and how
are they organized?

® Implementation
® Technologies and packaging used
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Hierarchical abstraction

B Hardware and software consist of
layers in a hierarchy

® To a good approximation

®m FEach layer hides (some of) its detail
from the layer above

® Principal of Abstraction

m Highest layer interacts with outside
world/end user
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Instruction set

architecture

B [nstruction set architecture (ISA) is a
key level of abstraction

® Primary interface between hardware and
software

m Set of operations that a processor
performs

m [nstruction format defines an
interpretation of bit strings

® Similar to ASCII, 2’s complement, IEEE
%4 754, BCD, etc
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Opcodes, operands, and

results

m A bit string, interpreted as an
instruction, specifies
® Operations to be performed

® Actual operand(s) and/or source(s) for
the operand(s) and their type(s)

® Destination for the result(s)
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-

Figure 5.1 The general instruction format that many processors use. The op-

code at the beginning of an instruction determines exactly which
operands follow.
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reprocessed
source prep assembly

— Source —p» i
code preprocessor compiler code

code j

relocatable binary

assembler |—#»> object —p linker = Object
code code

!

object code
(functions)
in libraries

Figure 4.6 The steps used to translate a source program to the binary object
code representation used by a processor.
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ISA Design

m Many tradeofts
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® [nstruction length

= Number of registers

= Number of instructions
® etc
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CISC vs RISC

m Complex Instruction Set Computer

m Reduced Instruction Set Computer
m RISC won

B Even Intel uses RISC micro-instructions

® They just have a really amazing instruction
decoder
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P,

Endianness

® [magine memory is read from lowest address to
highest address

® Big Endian

= Most significant, “big,” byte comes first. Ie, placed
in lowest numbered memory location.

= “Big” end appears first when reading memory
" Network traffic
= PowerPC, ARM, SPARC, MIPS

m [ittle Endian

= Reverse of Big Endian: least significant,
“Little,” byte placed in lowest address

; % m “Little” end first

© 2017 Dr. Jeffrey A. Turkstra
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Example and comparison

" Consider OxOOCOF380 = 0x 00 CO F3 80 =

Ob0OO00 0000 1100 0000 1111 0011 1000 0000

— ——
Most significant byte Least significant byte

Addresses

at OXQOOOOOOO; 0x00000000 1000 0000 0000 0000
Locations

accessed in Ox00000001 1111 0000 1100 0000
arrow-indicated 0x00000002 1100 0000 1111 0011

sequence V' 0x00000003 00000000 1000 0000

© 2017 by George B. Adams llI
Portions © 2017 Dr. Jeffrey A. Turkstra 33




Highest Data Structure

Address 31 24 23 16 15 8 7 0 -=— Bit offset
28

24

20

16

12

8

Byte3 | Byte2d | Bytel | ByteO |0 hﬂg?essts

Byte Offset
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Memory hierarchy

CPU IO bus [ Disk storage

Disk
memory
Register Level 1 Level 2 Level 3 Memory reference

reference Cache Cache Cache reference
reference  reference reference

Size: 1000 bytes 64 KB 256 KB 2-4MB 4-16 GB
Speed: 300ps 1ns 3-10ns 10-20ns 50-100 ns

(a) Memory hierarchy for server

/ Memory
CPU bus

FLASH
memory

Register Level 1 Level 2 Memory reference

reference Cache Cache reference
reference  reference

Size: 500 bytes 64 KB 256 KB 256-512 MB 4-8 GB
Speed: 500 ps 2ns 10-20 ns 50-100 ns 25—-50 us

(b) Memory hierarchy for a personal mobile device

© 2017 Dr. Jeffrey A. Turkstra




Registers

® Type of memory located inside CPU

m Can hold a single piece of data
® Data processing
= Control

® Many registers
= More later
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register
unit

data in
e

instr. decoder data
= memory

reg A
=

instruction
memory

addr.
in

reg B
E——

addr i
g dst reg out

in
data
in

data
out

offset

operation

Figure 6.9 Illustration of data paths including data memory.
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Designing an ISA

Instruction Meaning

add Add the integers in two registers and place the result
in a third register

load Load an integer from the data memory into a register

store Store the integer in a register into the data memory

jump Jump to a new location in the instruction memory

Figure 6.1 Four example instructions, the operands each uses, and the mean-
ing of the instruction.
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Example

Writing a program using these instructions is
programming in assembly language; example

Assembly instr. ;
load r2, 20(rl) ;
load «r3, 24(rl) ;
-Too| r4, r2, r3 ;
store r4, 28(rl) ;

Comments

r2 < Data Memory[20+rl1]
r3 « Data Memory [24+rl]
r4 « r2 + r3

Data Memory[28+rl] « r4

jump 60 (r7) ;, Fetch at Instr. Memory[60+r7]

rl, r2, r3, r4 are registers in the data path

20, 24, 28 are decimal constants

“x <" means “x” is the location for the result

Memory[x] means the contents of memory at address x

+ means addition, with operand type defined by the instruction

S

<

&

>

i)

. % (r1+r2is add with different data type than 28+r3)

© 2017 Dr. Jeffrey A. Turkstra
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operation

A

unused

00001

reg

reg B

| I

dst reg

operation

reg
|

A

unused

dstreg

offset

0:0:0:1:0

operation

reg A

reg B
]

unused

offset

00011

| [

operation

reg

A

unused

unused

offset

0:0:1:0:0

Figure 6.2 The binary representation for each of the four instructions listed

in Figure 6.1. Each instruction is thirty-two bits long.
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Assembly and its machine
code

000000000000000

Opcode P01nterP01nterP01nter Unused offset,
arbitrarily set all 0

Figure 6.3 (a) An example add instruction as it appears to a programmer,
and (b) the instruction stored in memory.
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ADD result data path

register
] unit
data in

data
memory

instr. decoder

instruction %

memory

addr.
in

reg B
—————

data

addr. "

dstre
in —A

data
out

data
in

offset

operation

ADD: ALU output is result, deliver to dst reg; result has
the meaning “integer” because this is an integer adder

Figure 6.9 Illustration of data paths including data memory.
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register
] unit
data in

LOAD result
data path

data
memory

instr. decoder

instruction ﬂ.

memory

addr.
in

reg B
———

addr.

dst re
in A

data
out

data
in

offset

operation

LOAD: ALU output is pointer that must be sent to data memory, which then
produces copy of the location contents which, finally, must be written into dst_reg;
Result is a bit stﬂ;g from memory: no inherent meaning at all ory

© 2017 Dr. Jeffrey A. Turkstra




register
unit

data in
fio

data
memory

instr. decoder

instruction %

memory

addr.
in

reg B
—————

addr. dst reg
in >

data
data in
out oifext STdRE result |data path

operation

STORE: ALU output is pointer that must be sent to data memory along with
the value from reg B to be written into the data memory location; Result is a
bit string fﬁ)gm reg_B written in memory, no inherent meanin%§1t all




JUMP result data path

register
unit

data in
fio

data
memory

instr. decoder

instruction %

memory

addr.
in

reg B
—————

data
out

data
in

addr. dst reg
in >

data
out

offset

operation

JUMP: ALU output is computed Next_instruction_pointer, must deliver to
Instruction_pointer_register; Result meaning is location of next instruction

on the execution path
mory.
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Intel Core microarchitecture
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pipeline

Instruction Fetch and PreDecode |«
Instruction Queue
Micro- *
code [|e— Decode
ROM _
i 4
Shared L2 Cache
Rename/Alloc Up to 10.7 GB/s
FSB
|
Retirement Unit
(Re-Order Buffer)

¥

Scheduler
ALU ALU ALU
Branch FAdd FMul Load Store
MM}:;SSE!FP MMX/SSE MMX/SSE
ove

| 1

L1D Cache and DTLB
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Direct memory access

= DMA al
subsys

lows other hardware
’ems to access main memory

withou

. going through the CPU

® Modern systems usually have DMA

control

ler (MMU)

" Memory address register, byte count,
control, etc

® Responsible for ensuring accesses are

prope
m Atta
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&3
S e
X

rly restrained
ck vector
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MMU

m Responsible for “refreshing” DRAM

® Translates virtual memory addresses
to physical addresses

m Sometimes part of CPU

® Sometimes not
= Northbridge for Intel until recently

m [7/ib have an Integrated Memory
Controller (IMC)
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Page 70

Flat Model
Linear Address
] >
Linear
Address
Space*
Segmented Model
[
Segments
Offset (effective address) Linear I
Address
i Space*
Alao n';f; Segment Selector

Real-Address Mode Model

Linear Address

Offset Space Divided

S lIsnto Equal
' ized Segments |
Ah%?gg Segment Selector -~
‘._

* The linear address space
can be paged when using the

flat or segmented model.

© 2017 Dr. Jeffrey A. Turkstra
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Execution modes

m CPU hardware has several possible
modes

= At any one time, in one mode

m Modes specity
® Privilege level
® Valid instructions
® Valid memory addresses
m Size of data items
® Backwards compatibility
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Rings

Protection Rings

Operating
System .
Kernel Level O

Operating System
Services

Level 1

Level 2

Applications
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Ring -1

® Intel Active Management Technology
m Exists for other architectures as well

® Runs on the Intel Management Engine (ME)
® [solated and protected coprocessor
" Embedded in all current Intel chipsets
m ARC core
= Qut-of-band access
® Direct access to Ethernet controller
® Requires vPro-enabled CPU/Motherboard/Chipset

"4 © 2017 Dr. Jeffrey A. Turkstra 52
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Ring -1

m __.if you can exploit it, you win.
= CVE-2017-506389

B Go read about it
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Trusting trust

m Reflections on Trusting Trust
® by Ken Thompson

B Read this too
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How to change between

modes

® Automatic
® Hardware interrupts
®m OS-specified handlers

m “Manual”
® [nitiated by software, typically OS
m System calls, signals, and page faults

= Sometimes mode can be set by
application
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Paging and Virtual
Memory

m __later
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Questions?
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