
© 2017 Dr. Jeffrey A. Turkstra 1

CS 50011: Introduction to Systems IICS 50011: Introduction to Systems II

Lecture 3: Computer ArchitectureLecture 3: Computer Architecture

Prof. Jeff TurkstraProf. Jeff Turkstra

© 2017 Dr. Jeffrey A. Turkstra 2

Lecture 03

 Basics
 Processors
 Architecture
 ISA
 DMA
 Modes

© 2017 Dr. Jeffrey A. Turkstra 3

 Some lecture material based on:
 Slides by Dr. George B. Adams III
 Slides from Hennessy & Patterson
 Slides from Silberschatz

© 2017 Dr. Jeffrey A. Turkstra 4

Basics

 Moore’s Law for integrated circuits
 Transistor count for a typical processor

or memory chip increases 40% to 55%
per year.

 Doubles every 18-24 months
 Transistor count ~= computational

power
 1986-2003 computer performance

increased ~ 50%/year

© 2017 Dr. Jeffrey A. Turkstra 5

 25,000-fold hardware performance
improvement since 1985
 Programs today trade execution

performance for programmer
productivity

 More programming is done in managed
languages like Java, Python, and C#

 New applications have arisen: speech,
sound, images, video

© 2017 Dr. Jeffrey A. Turkstra 6

Moore’s Law since 2003

 Microprocessor performance only
20%/year
 Maximum power dissipation limits for

air-cooled chips
 Lack of additional instruction-level

parallelism for hardware to exploit

© 2017 Dr. Jeffrey A. Turkstra 7

Computer components

 Hardware
 Transistors
 Gates
 Combinational and sequential circuits
 Adders, decoders, mux/demux, latches,

flip-flops, registers
 Processors
 Memory
 etc

© 2017 Dr. Jeffrey A. Turkstra 8

 Data types
 Representations for character, integer,

floating point, etc
 more, od, xxd

 Sign-magnitude
 1’s complement
 2’s complement
 IEEE 754
 BCD
 ...

© 2017 Dr. Jeffrey A. Turkstra 9

© 2017 Dr. Jeffrey A. Turkstra 10

 Software
 Instructions for what to compute

© 2017 Dr. Jeffrey A. Turkstra 11

How a modern computer
works

© 2017 Dr. Jeffrey A. Turkstra 12

Harvard architecture

 Idea by Howard Aiken, Harvard physicist,
to IBM Nov. 1937

 Built by IBM in Endicott, NY and delivered
to Harvard in Feb. 1944 as the Mark 1
computer

 Has separate memories for program
(instructions) and data

 Input/output (I/O) to connect to the world
 Processor to carry out the computations

© 2017 Dr. Jeffrey A. Turkstra 13

Harvard

© 2017 Dr. Jeffrey A. Turkstra 14

(John) Von Neumann
architecture

 Developed during his June 1945 train
ride from Philadelphia to Los Alamos,
NM

 He had programmed the Mark 1 in
August 1944

 One memory for both data and
program

 Same I/O
 Same processor

© 2017 Dr. Jeffrey A. Turkstra 15

Von Neumann

© 2017 Dr. Jeffrey A. Turkstra 16

von Neumann vs Harvard
architectures

 von Neumann
 Same memory holds instructions and data
 Single bus between CPU and memory
 Flexible, more cost effective

 Harvard
 Separate memories for data and instructions
 Two busses
 Allows two simultaneous memory fetches
 Less flexible, memory is physically partitioned

 Both are stored program computer designs

© 2017 Dr. Jeffrey A. Turkstra 17

Processors
 Device that performs automatic computation

 Fixed logic – single operation
 Traffic signal sequencer

 Selectable logic – user can select from multiple
hardwired functions

 Car with Econo and Sports modes for transmission

 Parameterized logic – computes fixed function
on variable user input

 Programmable video recorder

 Programmable logic processor
 CPU, GPU, etc

© 2017 Dr. Jeffrey A. Turkstra 18

Stored programs

 Some memories can be written to only
once and then read many times
 Read-Only Memory (ROM)
 E.g., automobile engine control

 Some ROM can be re-written
 PROM, programmable ROM
 EPROM, erasable programmable ROM
 EEPROM, electrically erasable…

 Embedded systems often PROM
 Firmware upgrades

© 2017 Dr. Jeffrey A. Turkstra 19

Fetch-Execute

 At the highest level, a processor does
this:
repeat forever {

FETCH, access the next program
instruction from location where it is

 stored
EXECUTE, perform the actions
described by the instruction

}

© 2017 Dr. Jeffrey A. Turkstra 20

Intel Core i7 Processor

© 2017 Dr. Jeffrey A. Turkstra 21

© 2017 Dr. Jeffrey A. Turkstra 22

Motherboard

© 2017 Dr. Jeffrey A. Turkstra 23

Architecture basics

 Instruction set
 Software instructions that the hardware

executes
 Functional organization

 How is the hardware partitioned into
specialized units?

© 2017 Dr. Jeffrey A. Turkstra 24

Architecture basics

 Logic design
 Which logic circuits are used and how

are they organized?
 Implementation

 Technologies and packaging used

© 2017 Dr. Jeffrey A. Turkstra 25

Hierarchical abstraction

 Hardware and software consist of
layers in a hierarchy
 To a good approximation

 Each layer hides (some of) its detail
from the layer above
 Principal of Abstraction

 Highest layer interacts with outside
world/end user

© 2017 Dr. Jeffrey A. Turkstra 26

Instruction set
architecture

 Instruction set architecture (ISA) is a
key level of abstraction
 Primary interface between hardware and

software
 Set of operations that a processor

performs
 Instruction format defines an

interpretation of bit strings
 Similar to ASCII, 2’s complement, IEEE

754, BCD, etc

© 2017 Dr. Jeffrey A. Turkstra 27

Opcodes, operands, and
results

 A bit string, interpreted as an
instruction, specifies
 Operations to be performed
 Actual operand(s) and/or source(s) for

the operand(s) and their type(s)
 Destination for the result(s)

© 2017 Dr. Jeffrey A. Turkstra 28

© 2017 Dr. Jeffrey A. Turkstra 29

© 2017 Dr. Jeffrey A. Turkstra 30

ISA Design

 Many tradeoffs
 Instruction length
 Number of registers
 Number of instructions
 etc

© 2017 Dr. Jeffrey A. Turkstra 31

CISC vs RISC

 Complex Instruction Set Computer
 Reduced Instruction Set Computer
 RISC won

 Even Intel uses RISC micro-instructions
 They just have a really amazing instruction

decoder

© 2017 Dr. Jeffrey A. Turkstra 32

Endianness
 Imagine memory is read from lowest address to

highest address
 Big Endian

 Most significant, “big,” byte comes first. Ie, placed
in lowest numbered memory location.

 “Big” end appears first when reading memory
 Network traffic
 PowerPC, ARM, SPARC, MIPS

 Little Endian
 Reverse of Big Endian: least significant,

“Little,” byte placed in lowest address
 “Little” end first

Example and comparison

 Consider 0x00C0F380 = 0x 00 C0 F3 80 =
0b0000 0000 1100 0000 1111 0011 1000 0000

Most significant byte Least significant byte

Memory
address

Byte at given location

Little endian Big endian

0x00000000 1000 0000 0000 0000

0x00000001 1111 0000 1100 0000

0x00000002 1100 0000 1111 0011

0x00000003 0000 0000 1000 0000

Addresses
arbitrarily start
at 0x00000000;
Locations
accessed in
arrow-indicated
sequence

33

© 2017 by George B. Adams III
Portions © 2017 Dr. Jeffrey A. Turkstra

© 2017 Dr. Jeffrey A. Turkstra 34

© 2017 Dr. Jeffrey A. Turkstra 35

Memory hierarchy

© 2017 Dr. Jeffrey A. Turkstra 36

Registers

 Type of memory located inside CPU
 Can hold a single piece of data

 Data processing
 Control

 Many registers
 More later

© 2017 Dr. Jeffrey A. Turkstra 37

© 2017 Dr. Jeffrey A. Turkstra 38

Designing an ISA

© 2017 Dr. Jeffrey A. Turkstra 39

Example

Writing a program using these instructions is
programming in assembly language; example
Assembly instr. ; Comments
load r2, 20(r1) ; r2 ← Data_Memory[20+r1]
load r3, 24(r1) ; r3 ← Data_Memory[24+r1]
add r4, r2, r3 ; r4 ← r2 + r3
store r4, 28(r1) ; Data_Memory[28+r1] ← r4
jump 60(r7) ; Fetch at Instr._Memory[60+r7]
r1, r2, r3, r4 are registers in the data path
20, 24, 28 are decimal constants
“x ←” means “x” is the location for the result
Memory[x] means the contents of memory at address x
+ means addition, with operand type defined by the instruction

(r1 + r2 is add with different data type than 28+r3)

© 2017 Dr. Jeffrey A. Turkstra 40

© 2017 Dr. Jeffrey A. Turkstra 41

Assembly and its machine
code

41

Opcode PointerPointerPointer Unused offset,
 arbitrarily set all 0

© 2017 Dr. Jeffrey A. Turkstra 42

ADD

42

ADD result data path

ADD: ALU output is result, deliver to dst reg; result has
the meaning “integer” because this is an integer adder

© 2017 Dr. Jeffrey A. Turkstra 43

LOAD

43

LO
A

D
 r

es
u

lt

d
at

a
p

at
h

LOAD: ALU output is pointer that must be sent to data memory, which then
produces copy of the location contents which, finally, must be written into dst_reg;
Result is a bit string from memory: no inherent meaning at all

© 2017 Dr. Jeffrey A. Turkstra 44

STORE

44

STORE result data path

STORE: ALU output is pointer that must be sent to data memory along with
the value from reg B to be written into the data memory location; Result is a
bit string from reg_B written in memory, no inherent meaning at all

© 2017 Dr. Jeffrey A. Turkstra 45

JUMP

45

JUMP result data path

JUMP: ALU output is computed Next_instruction_pointer, must deliver to
Instruction_pointer_register; Result meaning is location of next instruction
on the execution path

© 2017 Dr. Jeffrey A. Turkstra 46

Intel Core microarchitecture
pipeline

© 2017 Dr. Jeffrey A. Turkstra 47

Direct memory access

 DMA allows other hardware
subsystems to access main memory
without going through the CPU

 Modern systems usually have DMA
controller (MMU)
 Memory address register, byte count,

control, etc
 Responsible for ensuring accesses are

properly restrained
 Attack vector

© 2017 Dr. Jeffrey A. Turkstra 48

MMU

 Responsible for “refreshing” DRAM
 Translates virtual memory addresses

to physical addresses
 Sometimes part of CPU
 Sometimes not

 Northbridge for Intel until recently
 I7/i5 have an Integrated Memory

Controller (IMC)

© 2017 Dr. Jeffrey A. Turkstra 49

Page 70

© 2017 Dr. Jeffrey A. Turkstra 50

Execution modes

 CPU hardware has several possible
modes
 At any one time, in one mode

 Modes specify
 Privilege level
 Valid instructions
 Valid memory addresses
 Size of data items
 Backwards compatibility

© 2017 Dr. Jeffrey A. Turkstra 51

Rings

© 2017 Dr. Jeffrey A. Turkstra 52

Ring -1
 Intel Active Management Technology
 Exists for other architectures as well
 Runs on the Intel Management Engine (ME)

 Isolated and protected coprocessor
 Embedded in all current Intel chipsets
 ARC core
 Out-of-band access
 Direct access to Ethernet controller

 Requires vPro-enabled CPU/Motherboard/Chipset

© 2017 Dr. Jeffrey A. Turkstra 53

Ring -1

 ...if you can exploit it, you win.
 CVE-2017-5689

 Go read about it

© 2017 Dr. Jeffrey A. Turkstra 54

Trusting trust

 Reflections on Trusting Trust
 by Ken Thompson

 Read this too

© 2017 Dr. Jeffrey A. Turkstra 55

How to change between
modes

 Automatic
 Hardware interrupts
 OS-specified handlers

 “Manual”
 Initiated by software, typically OS
 System calls, signals, and page faults
 Sometimes mode can be set by

application

© 2017 Dr. Jeffrey A. Turkstra 56

Paging and Virtual
Memory

 ...later

© 2017 Dr. Jeffrey A. Turkstra 57

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Example and comparison
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

