Pg‘io%

'y
LMo

PURDUE

UNIVEIRSIT Yo

CS 50011: Introduction to Systems II

Lecture 3: Computer Architecture

Prof. Jeff Turkstra

© 2017 Dr. Jeffrey A. Turkstra

Lecture 03

®m Basics

®m Processors

m Architecture
= [SA

_I DAY VAN

m Modes

e q,‘)’
&5
o © 2017 Dr. Jeffrey A. Turkstra

m Some lecture material based on:
m Slides by Dr. George B. Adams III
m Slides from Hennessy & Patterson
® Slides from Silberschatz

P,
%),
A0S

IQ; o\

© 2017 Dr. Jeffrey A. Turkstra

Basics

m Moore’s Law for integrated circuits

® Transistor count for a typical processor
or memory chip increases 40% to 55%

per year.

® Doubles every 18-24 months

® Transistor count ~= computational
power

m 1986-2003 computer performance
increased ~ 50%/year

e q,‘)’
&5
o © 2017 Dr. Jeffrey A. Turkstra

m 25,000-fold hardware performance
improvement since 1985
® Programs today trade execution

performance for programmer
productivity

® More programming is done in managed
languages like Java, Python, and C#

= New applications have arisen: speech,
sound, images, video

pu
ey
S and
IQ; o\

© 2017 Dr. Jeffrey A. Turkstra

Moore’s Law since 2003

m Microprocessor performance only
20%/year

" Maximum power dissipation limits for
air-cooled chips

® [.ack of additional instruction-level
parallelism for hardware to exploit

pu
ey
S and
IQ; o\

© 2017 Dr. Jeffrey A. Turkstra

Computer components

m Hardware
® Transistors
® Gates
= Combinational and sequential circuits

B Adders, decoders, mux/demux, latches,
flip-flops, registers

B Processors
= Memory
B etc

pu
ey
S and
IQ; o\

© 2017 Dr. Jeffrey A. Turkstra

m Data types

P(J
5
5) nllof

m Representations for character, integer,
floating point, etc

® more, od, xxd
® Sign-magnitude
®]’s complement
m 2’s complement
m [EEE 754
= BCD

% H
5° © 2017 Dr. Jeffrey A. Turkstra

w + H

)

1

9
A
|
Q
¥
a

N = — O NIJ D --
-~ X O~ N X O -
— = — 0 - - FOA b
-— e 3 0O — C = m

Figure 3.6 The ASCII character set. Each entry shows a hexadecimal value
and the graphical representation for printable characters and the
meaning for others.

© 2017 Dr. Jeffrey A. Turkstra

Pg‘io%

S e
Q’ahlao‘o

m Software
® [nstructions for what to compute

© 2017 Dr. Jeffrey A. Turkstra

10

How a modern computer
works

instruction execution

cycle ; ,
y instructions

and

data movement data

1dniiaqul

=
O
~—
©

s’
-
©
0
@

% © 2017 Dr. Jeffrey A. Turkstra

11

Harvard architecture

®m [dea by Howard Aiken, Harvard physicist,
to IBM Nov. 1937

® Built by IBM in Endicott, NY and delivered
to Harvard in Feb. 1944 as the Mark 1
computer

®m Has separate memories for program
(instructions) and data

® Input/output (I/O) to connect to the world
B Processor to carry out the computations

e q,‘)’
&5
o © 2017 Dr. Jeffrey A. Turkstra 12

3\

pu
ey
S anLf
‘83900

Harvard

computer

instruction
memory

processor

input/output facilities

Figure 4.1 Illustration of the Harvard architecture that uses two memories,
one to hold programs and another to store data.

© 2017 Dr. Jeffrey A. Turkstra

13

(John) Von Neumann

architecture

m Developed during his June 1945 train
ride from Philadelphia to Los Alamos,
NM

®m He had programmed the Mark 1 in
August 1944

" One memory for both data and
program

B Same I/O

B Same processor

© 2017 Dr. Jeffrey A. Turkstra 14

Von Neumann

computer

processor | I | memory

mput/output facilities

Figure 4.2 Illustration of the Von Neumann architecture. Both programs and
data can be stored in the same memory

© 2017 Dr. Jeffrey A. Turkstra

15

Pg‘io%

S aLE
“’a” o

von Neumann vs Harvard
architectures

= von Neumann
= Same memory holds instructions and data
® Single bus between CPU and memory
® Flexible, more cost effective
" Harvard
®m Separate memories for data and instructions
= Two busses
= Allows two simultaneous memory fetches
® [ess flexible, memory is physically partitioned
® Both are stored program computer designs

% © 2017 Dr. Jeffrey A. Turkstra 16

Pg‘io%

S e
Q’ahlao‘o

Processors

® Device that performs automatic computation
= Fixed logic - single operation
m Traffic signal sequencer

m Selectable logic - user can select from multiple
hardwired functions

®m Car with Econo and Sports modes for transmission

= Parameterized logic - computes fixed function
on variable user input

® Programmable video recorder

= Programmable logic processor
m CPU, GPU, etc

© 2017 Dr. Jeffrey A. Turkstra 17

Stored programs

® Some memories can be written to only
once and then read many times

= Read-Only Memory (ROM)
= E.g., automobile engine control
® Some ROM can be re-written
= PROM, programmable ROM
= EPROM, erasable programmable ROM
= EEPROM, electrically erasable...

" Embedded systems often PROM
" Firmware upgrades

A © 2017 Dr. Jeffrey A. Turkstra

P(J
5
5) nllof

18

Fetch-Execute

m At the highest level, a processor does
this:
repeat forever {
FETCH, access the next program
iInstruction from location where it is

stored
EXECUTE, perform the actions
described by the instruction

e q,‘)’
&
o © 2017 Dr. Jeffrey A. Turkstra 19

Intel Core i7 Processor

Intel Core i7 Processor

Logical | Logical | Logical | Logical | Logical | Logical | Logical | Logical
Proces | Proces | Proces | Proces | Proces | Proces | Proces | Proces
sor sor sor sor sor sor sor sor
L1 and L2 L1 and L2 L1 and L2 L1 and L2

Execution Engine | Execution Engine | Execution Engine | Execution Engine

Third Level Cache

QuickPath Interconnect (QPI) Interface, Integrated Memory Controller

QPI L2 I I I

DDR3

Chipset

3\

pu
ey
S anLf
‘83900

OM19810b

© 2017 Dr. Jeffrey A. Turkstra

I
o7

o

P,
Xl

BackPanel	PCIExpressx16	p(j express
HOMI* Connector	1 x16 Connector	
Back Panel ! LGA1150 PO Expressx4	pQl Express	
\ DisplayPort* '—————» Processor 1 X16 Connector		
eEineadior	Socket e :	
____________	Dual-Channel N ———	
BackPanel Memory Bus ! DIMM 3 (Channel A, DIMM 0)		
DVH Connector 1™~ ' DIMM 1 (Channel A, DIMM 1)		
e e e m== A A f e e A e L R e
DMI FDI ; DIMM 4 (Channel B, DIMM 0) | !
e i Y Y ! DIMM 2 (Channel B, DIMM 1) 1
1 PCl Express v2.0 | L POBaemnl e e '
] x1 Connector : » PCl Express x1 _ >
““““““ e SPl | Gigabit Ethernet | — e,
- - Controller | 1
------------ - ~€&—3= LAN Connector
| PCI Express v2.0 ! | PClExpress 1 A ——— 3
' x1 Connector | ®
R |f|;1|:e1|:f H87 | Serial Peripheral Interface
c at Olrlm > (SPI)Flash Device
Pl FIR Legacy | LPC ontrolier
i {;“;LL’?’;.‘;';JE, : /0~ || Hub (PCH) SATA
L __________ Controller Interface
(6.0 Gb/s) T
_____________ - > ' PClExpress
| Trusted Platform i (5" S S| PCl Express x1 | Multiplexer &———1 Full-Mini/Half-Mini <=
: Module Header - > PCIExpress i CardSlot !
------------ . or mSATA '-----4-——--~
___________ SATA Interface - UsB 2.0 T
| SATA6OGb/s | (BOCbS)
1 Connectors (5) |
HD Audio
A AAA l
1 Conventional PO PCF%TO _PClexi Line Out ———— =
: P(;I_Egr!'l_ec_tg'_:_ Bridge «——— Mic In/Side Surround ———»
> | Conventional | ! Rear Surround —»
; PC_'_CO_TK;}O_FJ [Center Channel and LFE
; Conventional . Audio (Subwoofer)
! PCI Connector | | Codec ——— S/PDIF Digital Audio Out {optical) ——»
___‘::::::: ___________ |-¢————— Front Panel Mic In
i Back Panel (4)/Front Panel (5] UsB 2.0 Front Panel Line Qut ————
i USB 2.0 Ports R N I | P - S ——
ettt etelrtelstetotvtotvts 5 | S/PDIF Digital Audio |
| Back Panel (2)/Front Panel (2) | : i ___OutHeader |
i USB 3.0 Ports ;
o | SMBus

I = connector, socket, or head@® 2017 Dr. Jeffrey A. Turkstra

Pg‘io%

Xl

Motherboard

© 2017 Dr. Jeffrey A. Turkstra

22

Architecture basics

B [nstruction set

m Software instructions that the hardware
executes

®m Functional organization

® How is the hardware partitioned into
specialized units?

pu
ey
S and
IQ; o\

© 2017 Dr. Jeffrey A. Turkstra 23

Architecture basics

m [.ogic design
® Which logic circuits are used and how
are they organized?

® Implementation
® Technologies and packaging used

pu
ey
S and
IQ; o\

© 2017 Dr. Jeffrey A. Turkstra

24

Hierarchical abstraction

B Hardware and software consist of
layers in a hierarchy

® To a good approximation

®m FEach layer hides (some of) its detail
from the layer above

® Principal of Abstraction

m Highest layer interacts with outside
world/end user

e q,‘)’
&5
o © 2017 Dr. Jeffrey A. Turkstra 25

Instruction set

architecture

B [nstruction set architecture (ISA) is a
key level of abstraction

® Primary interface between hardware and
software

m Set of operations that a processor
performs

m [nstruction format defines an
interpretation of bit strings

® Similar to ASCII, 2’s complement, IEEE
%4 754, BCD, etc

© 2017 Dr. Jeffrey A. Turkstra 26

Opcodes, operands, and

results

m A bit string, interpreted as an
instruction, specifies
® Operations to be performed

® Actual operand(s) and/or source(s) for
the operand(s) and their type(s)

® Destination for the result(s)

P,
%),
A0S

IQ; o\

© 2017 Dr. Jeffrey A. Turkstra

27

-

Figure 5.1 The general instruction format that many processors use. The op-

code at the beginning of an instruction determines exactly which
operands follow.

© 2017 Dr. Jeffrey A. Turkstra

28

reprocessed
source prep assembly

— Source —p» i
code preprocessor compiler code

code j

relocatable binary

assembler |—#»> object —p linker = Object
code code

!

object code
(functions)
in libraries

Figure 4.6 The steps used to translate a source program to the binary object
code representation used by a processor.

© 2017 Dr. Jeffrey A. Turkstra

ISA Design

m Many tradeofts

pu
Gy
S anLf
IQ o\

® [nstruction length

= Number of registers

= Number of instructions
® etc

© 2017 Dr. Jeffrey A. Turkstra

30

CISC vs RISC

m Complex Instruction Set Computer

m Reduced Instruction Set Computer
m RISC won

B Even Intel uses RISC micro-instructions

® They just have a really amazing instruction
decoder

pu
ey
S and
IQ; o\

© 2017 Dr. Jeffrey A. Turkstra 31

P,

Endianness

® [magine memory is read from lowest address to
highest address

® Big Endian

= Most significant, “big,” byte comes first. Ie, placed
in lowest numbered memory location.

= “Big” end appears first when reading memory
" Network traffic
= PowerPC, ARM, SPARC, MIPS

m [ittle Endian

= Reverse of Big Endian: least significant,
“Little,” byte placed in lowest address

; % m “Little” end first

© 2017 Dr. Jeffrey A. Turkstra

g a\$

32

Example and comparison

" Consider OxOOCOF380 = 0x 00 CO F3 80 =

Ob0OO00 0000 1100 0000 1111 0011 1000 0000

— ——
Most significant byte Least significant byte

Addresses

at OXQOOOOOOO; 0x00000000 1000 0000 0000 0000
Locations

accessed in Ox00000001 1111 0000 1100 0000
arrow-indicated 0x00000002 1100 0000 1111 0011

sequence V' 0x00000003 00000000 1000 0000

© 2017 by George B. Adams llI
Portions © 2017 Dr. Jeffrey A. Turkstra 33

Highest Data Structure

Address 31 24 23 16 15 8 7 0 -=— Bit offset
28

24

20

16

12

8

Byte3 | Byte2d | Bytel | ByteO |0 hﬂg?essts

Byte Offset

P,

A%
aNLF
2ral®

3
Yse

© 2017 Dr. Jeffrey A. Turkstra 34

Memory hierarchy

CPU IO bus [Disk storage

Disk
memory
Register Level 1 Level 2 Level 3 Memory reference

reference Cache Cache Cache reference
reference reference reference

Size: 1000 bytes 64 KB 256 KB 2-4MB 4-16 GB
Speed: 300ps 1ns 3-10ns 10-20ns 50-100 ns

(a) Memory hierarchy for server

/ Memory
CPU bus

FLASH
memory

Register Level 1 Level 2 Memory reference

reference Cache Cache reference
reference reference

Size: 500 bytes 64 KB 256 KB 256-512 MB 4-8 GB
Speed: 500 ps 2ns 10-20 ns 50-100 ns 25—-50 us

(b) Memory hierarchy for a personal mobile device

© 2017 Dr. Jeffrey A. Turkstra

Registers

® Type of memory located inside CPU

m Can hold a single piece of data
® Data processing
= Control

® Many registers
= More later

e q,‘)’
&5
o © 2017 Dr. Jeffrey A. Turkstra

36

register
unit

data in
e

instr. decoder data
= memory

reg A
=

instruction
memory

addr.
in

reg B
E——

addr i
g dst reg out

in
data
in

data
out

offset

operation

Figure 6.9 Illustration of data paths including data memory.

© 2017 Dr. Jeffrey A. Turkstra

Designing an ISA

Instruction Meaning

add Add the integers in two registers and place the result
in a third register

load Load an integer from the data memory into a register

store Store the integer in a register into the data memory

jump Jump to a new location in the instruction memory

Figure 6.1 Four example instructions, the operands each uses, and the mean-
ing of the instruction.

e Q,V)'
&
o © 2017 Dr. Jeffrey A. Turkstra 38

S

an

Example

Writing a program using these instructions is
programming in assembly language; example

Assembly instr. ;
load r2, 20(rl) ;
load «r3, 24(rl) ;
-Too| r4, r2, r3 ;
store r4, 28(rl) ;

Comments

r2 < Data Memory[20+rl1]
r3 « Data Memory [24+rl]
r4 « r2 + r3

Data Memory[28+rl] « r4

jump 60 (r7) ;, Fetch at Instr. Memory[60+r7]

rl, r2, r3, r4 are registers in the data path

20, 24, 28 are decimal constants

“x <" means “x” is the location for the result

Memory[x] means the contents of memory at address x

+ means addition, with operand type defined by the instruction

S

<

&

>

i)

. % (r1+r2is add with different data type than 28+r3)

© 2017 Dr. Jeffrey A. Turkstra

S0

operation

A

unused

00001

reg

reg B

| I

dst reg

operation

reg
|

A

unused

dstreg

offset

0:0:0:1:0

operation

reg A

reg B
]

unused

offset

00011

| [

operation

reg

A

unused

unused

offset

0:0:1:0:0

Figure 6.2 The binary representation for each of the four instructions listed

in Figure 6.1. Each instruction is thirty-two bits long.

© 2017 Dr. Jeffrey A. Turkstra

Assembly and its machine
code

000000000000000

Opcode P01nterP01nterP01nter Unused offset,
arbitrarily set all 0

Figure 6.3 (a) An example add instruction as it appears to a programmer,
and (b) the instruction stored in memory.

e Qb'
o © 2017 Dr. Jeffrey A. Turkstra 41

ADD result data path

register
] unit
data in

data
memory

instr. decoder

instruction %

memory

addr.
in

reg B
—————

data

addr. "

dstre
in —A

data
out

data
in

offset

operation

ADD: ALU output is result, deliver to dst reg; result has
the meaning “integer” because this is an integer adder

Figure 6.9 Illustration of data paths including data memory.

© 2017 Dr. Jeffrey A. Turkstra

register
] unit
data in

LOAD result
data path

data
memory

instr. decoder

instruction ﬂ.

memory

addr.
in

reg B
———

addr.

dst re
in A

data
out

data
in

offset

operation

LOAD: ALU output is pointer that must be sent to data memory, which then
produces copy of the location contents which, finally, must be written into dst_reg;
Result is a bit stﬂ;g from memory: no inherent meaning at all ory

© 2017 Dr. Jeffrey A. Turkstra

register
unit

data in
fio

data
memory

instr. decoder

instruction %

memory

addr.
in

reg B
—————

addr. dst reg
in >

data
data in
out oifext STdRE result |data path

operation

STORE: ALU output is pointer that must be sent to data memory along with
the value from reg B to be written into the data memory location; Result is a
bit string fﬁ)gm reg_B written in memory, no inherent meanin%§1t all

JUMP result data path

register
unit

data in
fio

data
memory

instr. decoder

instruction %

memory

addr.
in

reg B
—————

data
out

data
in

addr. dst reg
in >

data
out

offset

operation

JUMP: ALU output is computed Next_instruction_pointer, must deliver to
Instruction_pointer_register; Result meaning is location of next instruction

on the execution path
mory.

© 2017 Dr. Jeffrey A. Turkstra

Intel Core microarchitecture

pu
ey
S and
IQ; o\

pipeline

Instruction Fetch and PreDecode |«
Instruction Queue
Micro- *
code [|e— Decode
ROM _
i 4
Shared L2 Cache
Rename/Alloc Up to 10.7 GB/s
FSB
|
Retirement Unit
(Re-Order Buffer)

¥

Scheduler
ALU ALU ALU
Branch FAdd FMul Load Store
MM}:;SSE!FP MMX/SSE MMX/SSE
ove

| 1

L1D Cache and DTLB

© 2017 Dr. Jeffrey A. Turkstra

46

Direct memory access

= DMA al
subsys

lows other hardware
’ems to access main memory

withou

. going through the CPU

® Modern systems usually have DMA

control

ler (MMU)

" Memory address register, byte count,
control, etc

® Responsible for ensuring accesses are

prope
m Atta

P,
&3
S e
X

rly restrained
ck vector

© 2017 Dr. Jeffrey A. Turkstra 47

MMU

m Responsible for “refreshing” DRAM

® Translates virtual memory addresses
to physical addresses

m Sometimes part of CPU

® Sometimes not
= Northbridge for Intel until recently

m [7/ib have an Integrated Memory
Controller (IMC)

pu
ey
S and
IQ; o\

© 2017 Dr. Jeffrey A. Turkstra 48

pu
ey
S and
IQ; o\

Page 70

Flat Model
Linear Address
] >
Linear
Address
Space*
Segmented Model
[
Segments
Offset (effective address) Linear I
Address
i Space*
Alao n';f; Segment Selector

Real-Address Mode Model

Linear Address

Offset Space Divided

S lIsnto Equal
' ized Segments |
Ah%?gg Segment Selector -~
‘._

* The linear address space
can be paged when using the

flat or segmented model.

© 2017 Dr. Jeffrey A. Turkstra

49

Execution modes

m CPU hardware has several possible
modes

= At any one time, in one mode

m Modes specity
® Privilege level
® Valid instructions
® Valid memory addresses
m Size of data items
® Backwards compatibility

pu
ey
S and
IQ; o\

© 2017 Dr. Jeffrey A. Turkstra

50

Rings

Protection Rings

Operating
System .
Kernel Level O

Operating System
Services

Level 1

Level 2

Applications

e q,‘)’
&5
o © 2017 Dr. Jeffrey A. Turkstra

51

Ring -1

® Intel Active Management Technology
m Exists for other architectures as well

® Runs on the Intel Management Engine (ME)
® [solated and protected coprocessor
" Embedded in all current Intel chipsets
m ARC core
= Qut-of-band access
® Direct access to Ethernet controller
® Requires vPro-enabled CPU/Motherboard/Chipset

"4 © 2017 Dr. Jeffrey A. Turkstra 52

P(J
5
5) nllof

Ring -1

m __.if you can exploit it, you win.
= CVE-2017-506389

B Go read about it

P,
%),
A0S

IQ; o\

© 2017 Dr. Jeffrey A. Turkstra

53

Trusting trust

m Reflections on Trusting Trust
® by Ken Thompson

B Read this too

e q,‘)’
&5
o © 2017 Dr. Jeffrey A. Turkstra

54

How to change between

modes

® Automatic
® Hardware interrupts
®m OS-specified handlers

m “Manual”
® [nitiated by software, typically OS
m System calls, signals, and page faults

= Sometimes mode can be set by
application

pu
ey
S and
IQ; o\

© 2017 Dr. Jeffrey A. Turkstra

55

Paging and Virtual
Memory

m __later

e q,‘)’
&5
o © 2017 Dr. Jeffrey A. Turkstra

56

Pg‘io%

Xl

Questions?

© 2017 Dr. Jeffrey A. Turkstra

57

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Example and comparison
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

