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Lecture 03

 Basics
 Processors
 Architecture
 ISA
 DMA
 Modes
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 Some lecture material based on:
 Slides by Dr. George B. Adams III
 Slides from Hennessy & Patterson
 Slides from Silberschatz
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Basics

 Moore’s Law for integrated circuits
 Transistor count for a typical processor 

or memory chip increases 40% to 55% 
per year.

 Doubles every 18-24 months
 Transistor count ~= computational 

power
 1986-2003 computer performance 

increased ~ 50%/year
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 25,000-fold hardware performance 
improvement since 1985
 Programs today trade execution 

performance for programmer 
productivity

 More programming is done in managed 
languages like Java, Python, and C#

 New applications have arisen: speech, 
sound, images, video
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Moore’s Law since 2003

 Microprocessor performance only 
20%/year
 Maximum power dissipation limits for 

air-cooled chips
 Lack of additional instruction-level 

parallelism for hardware to exploit
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Computer components

 Hardware
 Transistors
 Gates
 Combinational and sequential circuits
 Adders, decoders, mux/demux, latches, 

flip-flops, registers
 Processors
 Memory
 etc
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 Data types
 Representations for character, integer, 

floating point, etc
 more, od, xxd

 Sign-magnitude
 1’s complement
 2’s complement
 IEEE 754
 BCD
 ...
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 Software
 Instructions for what to compute
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How a modern computer 
works
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Harvard architecture

 Idea by Howard Aiken, Harvard physicist, 
to IBM Nov. 1937

 Built by IBM in Endicott, NY and delivered 
to Harvard in Feb. 1944 as the Mark 1 
computer

 Has separate memories for program 
(instructions) and data

 Input/output (I/O) to connect to the world
 Processor to carry out the computations
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Harvard
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(John) Von Neumann 
architecture

 Developed during his June 1945 train 
ride from Philadelphia to Los Alamos, 
NM

 He had programmed the Mark 1 in 
August 1944

 One memory for both data and 
program

 Same I/O
 Same processor
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Von Neumann



© 2017 Dr. Jeffrey A. Turkstra 16

von Neumann vs Harvard 
architectures

 von Neumann
 Same memory holds instructions and data
 Single bus between CPU and memory
 Flexible, more cost effective

 Harvard
 Separate memories for data and instructions
 Two busses
 Allows two simultaneous memory fetches
 Less flexible, memory is physically partitioned

 Both are stored program computer designs
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Processors
 Device that performs automatic computation

 Fixed logic – single operation
 Traffic signal sequencer

 Selectable logic – user can select from multiple 
hardwired functions

 Car with Econo and Sports modes for transmission

 Parameterized logic – computes fixed function 
on variable user input

 Programmable video recorder

 Programmable logic processor
 CPU, GPU, etc
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Stored programs

 Some memories can be written to only 
once and then read many times
 Read-Only Memory (ROM)
 E.g., automobile engine control

 Some ROM can be re-written
 PROM, programmable ROM
 EPROM, erasable programmable ROM
 EEPROM, electrically erasable…

 Embedded systems often PROM
 Firmware upgrades



© 2017 Dr. Jeffrey A. Turkstra 19

Fetch-Execute

 At the highest level, a processor does 
this:
repeat forever {

FETCH, access the next program 
instruction from location where it is

     stored
EXECUTE, perform the actions 
described by the instruction

}
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Intel Core i7 Processor



© 2017 Dr. Jeffrey A. Turkstra 21



© 2017 Dr. Jeffrey A. Turkstra 22

Motherboard
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Architecture basics

 Instruction set
 Software instructions that the hardware 

executes
 Functional organization

 How is the hardware partitioned into 
specialized units?
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Architecture basics

 Logic design
 Which logic circuits are used and how 

are they organized?
 Implementation

 Technologies and packaging used
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Hierarchical abstraction

 Hardware and software consist of 
layers in a hierarchy
 To a good approximation

 Each layer hides (some of) its detail 
from the layer above
 Principal of Abstraction

 Highest layer interacts with outside 
world/end user
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Instruction set 
architecture

 Instruction set architecture (ISA) is a 
key level of abstraction
 Primary interface between hardware and 

software
 Set of operations that a processor 

performs
 Instruction format defines an 

interpretation of bit strings
 Similar to ASCII, 2’s complement, IEEE 

754, BCD, etc
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Opcodes, operands, and 
results

 A bit string, interpreted as an 
instruction, specifies
 Operations to be performed
 Actual operand(s) and/or source(s) for 

the operand(s) and their type(s)
 Destination for the result(s)
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ISA Design

 Many tradeoffs
 Instruction length
 Number of registers
 Number of instructions
 etc
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CISC vs RISC

 Complex Instruction Set Computer
 Reduced Instruction Set Computer
 RISC won

 Even Intel uses RISC micro-instructions
 They just have a really amazing instruction 

decoder
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Endianness
 Imagine memory is read from lowest address to 

highest address
 Big Endian

 Most significant, “big,” byte comes first. Ie, placed 
in lowest numbered memory location.

 “Big” end appears first when reading memory
 Network traffic
 PowerPC, ARM, SPARC, MIPS

 Little Endian
 Reverse of Big Endian: least significant, 

“Little,” byte placed in lowest address
 “Little” end first



Example and comparison

 Consider 0x00C0F380 = 0x 00 C0 F3 80 =
0b0000 0000 1100 0000 1111 0011 1000 0000

Most significant byte Least significant byte

Memory 
address

Byte at given location

Little endian Big endian

0x00000000 1000 0000 0000 0000

0x00000001 1111 0000 1100 0000

0x00000002 1100 0000 1111 0011

0x00000003 0000 0000 1000 0000

Addresses 
arbitrarily start 
at 0x00000000; 
Locations 
accessed in 
arrow-indicated 
sequence

33
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Memory hierarchy
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Registers

 Type of memory located inside CPU
 Can hold a single piece of data

 Data processing
 Control

 Many registers
 More later
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Designing an ISA
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Example

Writing a program using these instructions is 
programming in assembly language; example
Assembly instr.  ; Comments
load  r2, 20(r1) ; r2 ← Data_Memory[20+r1]
load  r3, 24(r1) ; r3 ← Data_Memory[24+r1]
add   r4, r2, r3 ; r4 ← r2 + r3
store r4, 28(r1) ; Data_Memory[28+r1] ← r4
jump  60(r7)   ; Fetch at Instr._Memory[60+r7] 
r1, r2, r3, r4 are registers in the data path
20, 24, 28 are decimal constants
“x ←” means “x” is the location for the result 
Memory[x] means the contents of memory at address x
+ means addition, with operand type defined by the instruction

(r1 + r2 is add with different data type than 28+r3)
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Assembly and its machine 
code

41

Opcode  PointerPointerPointer Unused offset,
                              arbitrarily set all 0
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ADD

42

ADD result data path

ADD:  ALU output is result, deliver to dst reg; result has 
the meaning “integer” because this is an integer adder
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LOAD

43

LO
A

D
 r

es
u

lt
 

d
at

a 
p

at
h

LOAD:  ALU output is pointer that must be sent to data memory, which then 
produces copy of the location contents which, finally, must be written into dst_reg; 
Result is a bit string from memory:  no inherent meaning at all
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STORE

44

STORE result data path

STORE:  ALU output is pointer that must be sent to data memory along with 
the value from reg B to be written into the data memory location; Result is a 
bit string from reg_B written in memory, no inherent meaning at all
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JUMP

45

JUMP result data path

JUMP:  ALU output is computed Next_instruction_pointer, must deliver to 
Instruction_pointer_register; Result meaning is location of next instruction 
on the execution path
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Intel Core microarchitecture 
pipeline
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Direct memory access

 DMA allows other hardware 
subsystems to access main memory 
without going through the CPU

 Modern systems usually have DMA 
controller (MMU)
 Memory address register, byte count, 

control, etc
 Responsible for ensuring accesses are 

properly restrained
 Attack vector
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MMU

 Responsible for “refreshing” DRAM
 Translates virtual memory addresses 

to physical addresses
 Sometimes part of CPU
 Sometimes not

 Northbridge for Intel until recently
 I7/i5 have an Integrated Memory 

Controller (IMC)
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Page 70
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Execution modes

 CPU hardware has several possible 
modes
 At any one time, in one mode

 Modes specify
 Privilege level
 Valid instructions
 Valid memory addresses
 Size of data items
 Backwards compatibility
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Rings
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Ring -1
 Intel Active Management Technology
 Exists for other architectures as well
 Runs on the Intel Management Engine (ME)

 Isolated and protected coprocessor
 Embedded in all current Intel chipsets
 ARC core
 Out-of-band access
 Direct access to Ethernet controller

 Requires vPro-enabled CPU/Motherboard/Chipset
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Ring -1

 ...if you can exploit it, you win.
 CVE-2017-5689

 Go read about it
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Trusting trust

 Reflections on Trusting Trust
 by Ken Thompson

 Read this too
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How to change between 
modes

 Automatic
 Hardware interrupts
 OS-specified handlers

 “Manual”
 Initiated by software, typically OS
 System calls, signals, and page faults
 Sometimes mode can be set by 

application
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Paging and Virtual 
Memory

 ...later
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Questions?
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