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 Some lecture material based on:
 Slides by Dr. George B. Adams III
 Slides from Hennessy & Patterson
 Slides from Silberschatz
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Basics

 Moore’s Law for integrated circuits
 Transistor count for a typical processor 

or memory chip increases 40% to 55% 
per year.

 Doubles every 18-24 months
 Transistor count ~= computational 

power
 1986-2003 computer performance 

increased ~ 50%/year
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 25,000-fold hardware performance 
improvement since 1985
 Programs today trade execution 

performance for programmer 
productivity

 More programming is done in managed 
languages like Java, Python, and C#

 New applications have arisen: speech, 
sound, images, video
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Moore’s Law since 2003

 Microprocessor performance only 
20%/year
 Maximum power dissipation limits for 

air-cooled chips
 Lack of additional instruction-level 

parallelism for hardware to exploit
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Computer components

 Hardware
 Transistors
 Gates
 Combinational and sequential circuits
 Adders, decoders, mux/demux, latches, 

flip-flops, registers
 Processors
 Memory
 etc
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 Data types
 Representations for character, integer, 

floating point, etc
 more, od, xxd

 Sign-magnitude
 1’s complement
 2’s complement
 IEEE 754
 BCD
 ...
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 Software
 Instructions for what to compute
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How a modern computer 
works
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Harvard architecture

 Idea by Howard Aiken, Harvard physicist, 
to IBM Nov. 1937

 Built by IBM in Endicott, NY and delivered 
to Harvard in Feb. 1944 as the Mark 1 
computer

 Has separate memories for program 
(instructions) and data

 Input/output (I/O) to connect to the world
 Processor to carry out the computations
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Harvard
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(John) Von Neumann 
architecture

 Developed during his June 1945 train 
ride from Philadelphia to Los Alamos, 
NM

 He had programmed the Mark 1 in 
August 1944

 One memory for both data and 
program

 Same I/O
 Same processor
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Von Neumann
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von Neumann vs Harvard 
architectures

 von Neumann
 Same memory holds instructions and data
 Single bus between CPU and memory
 Flexible, more cost effective

 Harvard
 Separate memories for data and instructions
 Two busses
 Allows two simultaneous memory fetches
 Less flexible, memory is physically partitioned

 Both are stored program computer designs
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Processors
 Device that performs automatic computation

 Fixed logic – single operation
 Traffic signal sequencer

 Selectable logic – user can select from multiple 
hardwired functions

 Car with Econo and Sports modes for transmission

 Parameterized logic – computes fixed function 
on variable user input

 Programmable video recorder

 Programmable logic processor
 CPU, GPU, etc
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Stored programs

 Some memories can be written to only 
once and then read many times
 Read-Only Memory (ROM)
 E.g., automobile engine control

 Some ROM can be re-written
 PROM, programmable ROM
 EPROM, erasable programmable ROM
 EEPROM, electrically erasable…

 Embedded systems often PROM
 Firmware upgrades
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Fetch-Execute

 At the highest level, a processor does 
this:
repeat forever {

FETCH, access the next program 
instruction from location where it is

     stored
EXECUTE, perform the actions 
described by the instruction

}
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Intel Core i7 Processor
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Motherboard
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Architecture basics

 Instruction set
 Software instructions that the hardware 

executes
 Functional organization

 How is the hardware partitioned into 
specialized units?
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Architecture basics

 Logic design
 Which logic circuits are used and how 

are they organized?
 Implementation

 Technologies and packaging used
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Hierarchical abstraction

 Hardware and software consist of 
layers in a hierarchy
 To a good approximation

 Each layer hides (some of) its detail 
from the layer above
 Principal of Abstraction

 Highest layer interacts with outside 
world/end user
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Instruction set 
architecture

 Instruction set architecture (ISA) is a 
key level of abstraction
 Primary interface between hardware and 

software
 Set of operations that a processor 

performs
 Instruction format defines an 

interpretation of bit strings
 Similar to ASCII, 2’s complement, IEEE 

754, BCD, etc
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Opcodes, operands, and 
results

 A bit string, interpreted as an 
instruction, specifies
 Operations to be performed
 Actual operand(s) and/or source(s) for 

the operand(s) and their type(s)
 Destination for the result(s)
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ISA Design

 Many tradeoffs
 Instruction length
 Number of registers
 Number of instructions
 etc
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CISC vs RISC

 Complex Instruction Set Computer
 Reduced Instruction Set Computer
 RISC won

 Even Intel uses RISC micro-instructions
 They just have a really amazing instruction 

decoder



© 2017 Dr. Jeffrey A. Turkstra 32

Endianness
 Imagine memory is read from lowest address to 

highest address
 Big Endian

 Most significant, “big,” byte comes first. Ie, placed 
in lowest numbered memory location.

 “Big” end appears first when reading memory
 Network traffic
 PowerPC, ARM, SPARC, MIPS

 Little Endian
 Reverse of Big Endian: least significant, 

“Little,” byte placed in lowest address
 “Little” end first



Example and comparison

 Consider 0x00C0F380 = 0x 00 C0 F3 80 =
0b0000 0000 1100 0000 1111 0011 1000 0000

Most significant byte Least significant byte

Memory 
address

Byte at given location

Little endian Big endian

0x00000000 1000 0000 0000 0000

0x00000001 1111 0000 1100 0000

0x00000002 1100 0000 1111 0011

0x00000003 0000 0000 1000 0000

Addresses 
arbitrarily start 
at 0x00000000; 
Locations 
accessed in 
arrow-indicated 
sequence

33
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Memory hierarchy
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Registers

 Type of memory located inside CPU
 Can hold a single piece of data

 Data processing
 Control

 Many registers
 More later



© 2017 Dr. Jeffrey A. Turkstra 37



© 2017 Dr. Jeffrey A. Turkstra 38

Designing an ISA



© 2017 Dr. Jeffrey A. Turkstra 39

Example

Writing a program using these instructions is 
programming in assembly language; example
Assembly instr.  ; Comments
load  r2, 20(r1) ; r2 ← Data_Memory[20+r1]
load  r3, 24(r1) ; r3 ← Data_Memory[24+r1]
add   r4, r2, r3 ; r4 ← r2 + r3
store r4, 28(r1) ; Data_Memory[28+r1] ← r4
jump  60(r7)   ; Fetch at Instr._Memory[60+r7] 
r1, r2, r3, r4 are registers in the data path
20, 24, 28 are decimal constants
“x ←” means “x” is the location for the result 
Memory[x] means the contents of memory at address x
+ means addition, with operand type defined by the instruction

(r1 + r2 is add with different data type than 28+r3)
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Assembly and its machine 
code

41

Opcode  PointerPointerPointer Unused offset,
                              arbitrarily set all 0
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ADD

42

ADD result data path

ADD:  ALU output is result, deliver to dst reg; result has 
the meaning “integer” because this is an integer adder
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LOAD

43

LO
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LOAD:  ALU output is pointer that must be sent to data memory, which then 
produces copy of the location contents which, finally, must be written into dst_reg; 
Result is a bit string from memory:  no inherent meaning at all
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STORE

44

STORE result data path

STORE:  ALU output is pointer that must be sent to data memory along with 
the value from reg B to be written into the data memory location; Result is a 
bit string from reg_B written in memory, no inherent meaning at all
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JUMP

45

JUMP result data path

JUMP:  ALU output is computed Next_instruction_pointer, must deliver to 
Instruction_pointer_register; Result meaning is location of next instruction 
on the execution path
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Intel Core microarchitecture 
pipeline
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Direct memory access

 DMA allows other hardware 
subsystems to access main memory 
without going through the CPU

 Modern systems usually have DMA 
controller (MMU)
 Memory address register, byte count, 

control, etc
 Responsible for ensuring accesses are 

properly restrained
 Attack vector
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MMU

 Responsible for “refreshing” DRAM
 Translates virtual memory addresses 

to physical addresses
 Sometimes part of CPU
 Sometimes not

 Northbridge for Intel until recently
 I7/i5 have an Integrated Memory 

Controller (IMC)



© 2017 Dr. Jeffrey A. Turkstra 49

Page 70
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Execution modes

 CPU hardware has several possible 
modes
 At any one time, in one mode

 Modes specify
 Privilege level
 Valid instructions
 Valid memory addresses
 Size of data items
 Backwards compatibility
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Rings
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Ring -1
 Intel Active Management Technology
 Exists for other architectures as well
 Runs on the Intel Management Engine (ME)

 Isolated and protected coprocessor
 Embedded in all current Intel chipsets
 ARC core
 Out-of-band access
 Direct access to Ethernet controller

 Requires vPro-enabled CPU/Motherboard/Chipset
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Ring -1

 ...if you can exploit it, you win.
 CVE-2017-5689

 Go read about it
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Trusting trust

 Reflections on Trusting Trust
 by Ken Thompson

 Read this too
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How to change between 
modes

 Automatic
 Hardware interrupts
 OS-specified handlers

 “Manual”
 Initiated by software, typically OS
 System calls, signals, and page faults
 Sometimes mode can be set by 

application
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Paging and Virtual 
Memory

 ...later
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Questions?
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