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Lecture 03

® Basics

= Processors

= Architecture
= [SA

= DMA

= Modes
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® Some lecture material based on:
= Slides by Dr. George B. Adams III
= Slides from Hennessy & Patterson
m Slides from Silberschatz
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Basics

= Moore’s Law for integrated circuits

= Transistor count for a typical processor
or memory chip increases 40% to 55%

per year.

= Doubles every 18-24 months

= Transistor count ~= computational
power

= 1986-2003 computer performance
increased ~ 50%/year
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= 25,000-fold hardware performance
improvement since 1985
® Programs today trade execution
performance for programmer
productivity

® More programming is done in managed
languages like Java, Python, and C#

= New applications have arisen: speech,
sound, images, video
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Moore’s Law since 2003

= Microprocessor performance only
20%/year
= Maximum power dissipation limits for
air-cooled chips
= Lack of additional instruction-level
parallelism for hardware to exploit
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Computer components

= Hardware
= Transistors
= Gates
= Combinational and sequential circuits
® Adders, decoders, mux/demux, latches,
flip-flops, registers
= Processors
= Memory
metc
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= Data types
= Representations for character, integer,
floating point, etc
= more, od, xxd
= Sign-magnitude
= 1’s complement
= 2’s complement
= [EEE 754
= BCD
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= Software
» [nstructions for what to compute
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How a modern computer
works
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Harvard architecture

= Idea by Howard Aiken, Harvard physicist,
to IBM Nov. 1937

® Built by IBM in Endicott, NY and delivered
to Harvard in Feb. 1944 as the Mark 1
computer

= Has separate memories for program
(instructions) and data

= Input/output (I/O) to connect to the world
® Processor to carry out the computations
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Harvard

Input/output faciliies

Figure 4.1
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(John) Von Neumann
architecture

= Developed during his June 1945 train
ride from Philadelphia to Los Alamos,
NM

= He had programmed the Mark 1 in
August 1944

= One memory for both data and
program

= Same I/O
® Same processor
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Von Neumann

Figure 42
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von Neumann vs Harvard
architectures

= von Neumann
= Same memory holds instructions and data
= Single bus between CPU and memory
= Flexible, more cost effective
= Harvard
= Separate memories for data and instructions
= Two busses
= Allows two simultaneous memory fetches
= Less flexible, memory is physically partitioned
= Both are stored program computer designs
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Processors

= Device that performs automatic computation
= Fixed logic - single operation
= Traffic signal sequencer

= Selectable logic - user can select from multiple
hardwired functions

= Car with Econo and Sports modes for transmission

= Parameterized logic - computes fixed function
on variable user input

= Programmable video recorder
= Programmable logic processor
= CPU, GPU, etc
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Stored programs

= Some memories can be written to only
once and then read many times

= Read-Only Memory (ROM)
= E.g., automobile engine control
= Some ROM can be re-written
= PROM, programmable ROM
= EPROM, erasable programmable ROM
= EEPROM, electrically erasable...
= Embedded systems often PROM
= Firmware upgrades
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Fetch-Execute

= At the highest level, a processor does

this:

repeat forever {
FETCH, access the next program
instruction from location where it is
stored
EXECUTE, perform the actions
described by the instruction
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Intel Core i7 Processor
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Motherboard
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Architecture basics

® [nstruction set
m Software instructions that the hardware
executes
= Functional organization

= How is the hardware partitioned into
specialized units?

©2017 Dr. Jeffrey A. Turkstra 23

Architecture basics

® [ ogic design
® Which logic circuits are used and how
are they organized?

= Implementation
= Technologies and packaging used
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Hierarchical abstraction

® Hardware and software consist of
layers in a hierarchy
= To a good approximation

® Each layer hides (some of) its detail
from the layer above
= Principal of Abstraction

» Highest layer interacts with outside
world/end user
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Instruction set
architecture

m [nstruction set architecture (ISA) is a
key level of abstraction
® Primary interface between hardware and
software
= Set of operations that a processor
performs

= Instruction format defines an
interpretation of bit strings

= Similar to ASCII, 2’s complement, IEEE
754, BCD, etc
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Opcodes, operands, and
results
= A bit string, interpreted as an
instruction, specifies

® Operations to be performed

® Actual operand(s) and/or source(s) for
the operand(s) and their type(s)

® Destination for the result(s)
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opcode operand 1 operand 2

Figure 5.1 The general instruction format that many processors use. The op-
code at the beginning of an instruction determines exactly which
operands follow.
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preprocessed
—=| preprocessor |—#= source —a=| compiler |—#=

source
code

( relocatable
assembler |—#= object —a=| linker
code
object code
(functions)
in libraries

Figure 4.6 The steps used to translate a source program to the binary object

assembly
code

code representation used by a processor.
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ISA Design

= Many tradeoffs
® Instruction length
= Number of registers
= Number of instructions
= etc
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CISC vs RISC

= Complex Instruction Set Computer
® Reduced Instruction Set Computer
= RISC won

= Even Intel uses RISC micro-instructions

= They just have a really amazing instruction
decoder
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Endianness

= Imagine memory is read from lowest address to
highest address

= Big Endian
= Most significant, “big,” byte comes first. Ie, placed
in lowest numbered memory location.
= “Big” end appears first when reading memory
= Network traffic
= PowerPC, ARM, SPARC, MIPS
= Little Endian
= Reverse of Big Endian: least significant,
“Little,” byte placed in lowest address
= “Little” end first

Example and comparison

® Consider OXOOCOF380 = Ox 00 CO F3 80 =
0b0000 0000 1100 0000 1111 0011 1000 0000

W_J

Most significant byte Least significant byte
Byte at given location

Addresses
arbitrarily start ':jeé?gs"z Little endian Big endian
at 0x00000000: |, 00000000 10000000 0000 0000
Locations
accessed in 0x00000001 11110000 1100 0000
arrow-indicated 0x00000002 11000000 11110011
sequence V' 0x00000003 00000000 1000 0000
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Memory hierarchy
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.
Registers

= Type of memory located inside CPU
® Can hold a single piece of data

= Data processing

= Control

= Many registers
= More later
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Designing an ISA

bt
pgm. ctr it
adder

register
unit

datain Instruction
F——— add Add the integers in two registers and place the result
memory in a third register
s load Load an integer from the data memory into a register
o data store Store the integer in a register into the data memory
o - jump Jump to a new location in the instruction memory
out
Figure 6.1 Four example instructions, the operands each uses, and the mean-
ing of the instruction.
Figure 6.9 Mlustration of data paths ncluding data memory
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Example

operation  reg A regB  dstreg unused
Writing a program using these instructions is ead [ololoo] \ [ [ |
programming in assembly language; example cperation _regA__unused _dstreg oftset
Assembly instr. ; Comments oed ‘0 LICK D‘ ‘ l l ‘
load r2, 20(rl) ; r2 < Data Memory[20+rl] operation regA  regB  unused offset
load r3, 24(rl) ; r3 — Data Memory[24+rl] store [0707071 1] [ [ [ ]
add rd4, r2, r3 ; r4d -r2 + r3 operation  reg A unused unused offset
store r4, 28(rl) ; Data Memory[28+rl] « r4 jump 070 1 0 0] | | [ ]

jump 60(r7) ; Fetch at Instr. Memory[60+r7]

rl, r2, r3, r4 are registers in the data path

B e S e otation for the resul P 52 T by ovcntion o o o s

Memory[x] means the contents of memory at address x

+ means addition, with operand type defined by the instruction
(r1 +r2 is add with different data type than 28+r3)
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Assembly and its machine ADD
code w ”

ADD result data path

32-bit a2
pgm.ctr.  32bit
adder

register

instr. decoder data
operation reg BA[dst [ Yffset | memory
0000#fo0 10 1 1)l 1]o olo 0 000000000000 4 sdgr
Opcode PointerPointerPointer Unused offset, addr

arbitrarily set all 0 data
eut offset |
Figure 6.3 (2) An cxample add instruction as it appears o a programmer, Gperation
and (b) the instruction stored in memory.
@ ADD: ALU output is result, deliver to dst reg; result has

the meaning “integer” because this is an integer adder

Figure 6.9 Illustration of data paths including data memory
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LOAD STORE

M1 M3

32-bit a2
pgm.ctr.  32bit
adder

register
unit register

unit

data in

LOAD result
data path

data in

instr. decoder

instr. decoder data

memory

instruction
instruction

offset

operation

offset ST¢RE result|data p: f
operation

STORE: ALU output is pointer that must be sent to data memory along with
the value from reg B to be written into the data memory location; Result is a
ory bit string fggym reg_B written in memory, no inherent meaning gt all

LOAD: ALU output is pointer that must be sent to data memory, which then
produces copy of the location contents which, finally, must be written into dst_reg;
Result is a bt stgipg from memory: o inherent meaning at all
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JUMP Intel Core n.ncr(.)archltecture
. - pipeline

JUMP result data path
register
unit

data in

data
memory

instr. decoder

instruction reg A

memory

reg B

out offset

operation

JUMP: ALU output is computed Next_instruction_pointer, must deliver to
Instruction_pointer_register; Result meaning is location of next instruction

on the execution path mory.
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Direct memory access MMU

= DMA allows other hardware ® Responsible for “refreshing” DRAM

subsystems to access main memory ® Translates virtual memory addresses
without going through the CPU to physical addresses
= Modern systems usually have DMA = Sometimes part of CPU

controller (MMU)

= Memory address register, byte count,
control, etc

= Responsible for ensuring accesses are
properly restrained

= Attack vector
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= Sometimes not
= Northbridge for Intel until recently

= [7/i5 have an Integrated Memory
Controller (IMC)
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Execution modes

= CPU hardware has several possible
modes

= At any one time, in one mode
= Modes specify

= Privilege level

= Valid instructions

® Valid memory addresses

= Size of data items

® Backwards compatibility
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Rings
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Ring -1

= Intel Active Management Technology
= Exists for other architectures as well
= Runs on the Intel Management Engine (ME)
= [solated and protected coprocessor
= Embedded in all current Intel chipsets
= ARC core
= Qut-of-band access
= Direct access to Ethernet controller
= Requires vPro-enabled CPU/Motherboard/Chipset
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Ring -1

= __.if you can exploit it, you win.
= CVE-2017-5689
= Go read about it
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Trusting trust

® Reflections on Trusting Trust
= by Ken Thompson
= Read this too
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How to change between
modes

= Automatic
= Hardware interrupts
= OS-specified handlers
= “Manual”
= Initiated by software, typically OS
m System calls, signals, and page faults

= Sometimes mode can be set by
application
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Paging and Virtual
Memory

= later
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Questions?
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