UNIVERSITY
CS 50011: Introduction to Systems II

Lecture 3: Computer Architecture

Prof. Jeff Turkstra

©2017 Dr. Jeffrey A. Turkstra

Lecture 03

® Basics

= Processors

= Architecture
= [SA

= DMA

= Modes

©2017 Dr. Jeffrey A. Turkstra

® Some lecture material based on:
= Slides by Dr. George B. Adams III
= Slides from Hennessy & Patterson
m Slides from Silberschatz

©2017 Dr. Jeffrey A. Turkstra

Basics

= Moore’s Law for integrated circuits

= Transistor count for a typical processor
or memory chip increases 40% to 55%

per year.

= Doubles every 18-24 months

= Transistor count ~= computational
power

= 1986-2003 computer performance
increased ~ 50%/year

©2017 Dr. Jeffrey A. Turkstra

= 25,000-fold hardware performance
improvement since 1985
® Programs today trade execution
performance for programmer
productivity

® More programming is done in managed
languages like Java, Python, and C#

= New applications have arisen: speech,
sound, images, video

©2017 Dr. Jeffrey A. Turkstra

Moore’s Law since 2003

= Microprocessor performance only
20%/year
= Maximum power dissipation limits for
air-cooled chips
= Lack of additional instruction-level
parallelism for hardware to exploit

©2017 Dr. Jeffrey A. Turkstra




Computer components

= Hardware
= Transistors
= Gates
= Combinational and sequential circuits
® Adders, decoders, mux/demux, latches,
flip-flops, registers
= Processors
= Memory
metc

©2017 Dr. Jeffrey A. Turkstra 7

= Data types
= Representations for character, integer,
floating point, etc
= more, od, xxd
= Sign-magnitude
= 1’s complement
= 2’s complement
= [EEE 754
= BCD

©2017 Dr. Jeffrey A. Turkstra 8

00 nul | 01 soh | 02 stx | 03 etx | 04 eot | 05 enq | 06 ack | 07 bel
08 bs |09 ht [0A it |0B wt [oC np 0D cr [OE so [OF si
10 die | 11 det | 12 de2 | 13 de3 | 14 de4 | 15 nak | 16 syn [ 17 etb
18 can [ 19 em [1A sub [ 1B esc [1C s [ 1D gs [te rs |1F us
20 sp |21 1 |22 23 # |24 s |25 % |26 & |27

28 (|20 ) |2a * |28 + |2¢ 2 - |2 2

3 0 |31 1 |32 2 |33 3 |34 4 |35 5 |36 6 |37 7
38 8 |3 9 |3 38 3¢ < |3 = |3 > [3F 2
4 @ |41 A |42 B |43 C |44 D |45 E |46 F (47 G
48 H |49 1 |4 J |4B K [4c L [4D M [4E N [4F O
50 P |51 Q|52 R |53 s |58 T |55 U |56 v |57 w
58 X |59 Y |5A z |s5B [ |sC D ] [SE ~ [sF

60 61 a |62 b |63 c |64 d |65 e |66 f |67 g
68 h |69 i |6A | |6B k |6C | |6D m |6E n [6F o
70 p |7 q |72 r |73 s |74 t |75 w76 v |77 w
78 x |79 y |7a z |78 ( |7¢ m ) |7 - |7F gl

h entry shows a

Figure 3.6 The ASC!
a on for priniable

©2017 Dr. Jeffrey A. Turkstra 9

= Software
» [nstructions for what to compute

©2017 Dr. Jeffrey A. Turkstra 10

How a modern computer
works

e instruction execution

thread of execution g e Inetiictione)
rez i B y and
«— gata movement .
CPU (N}
5 |
I oA
: 1 / remen

©2017 Dr. Jeffrey A. Turkstra 1

Harvard architecture

= Idea by Howard Aiken, Harvard physicist,
to IBM Nov. 1937

® Built by IBM in Endicott, NY and delivered
to Harvard in Feb. 1944 as the Mark 1
computer

= Has separate memories for program
(instructions) and data

= Input/output (I/O) to connect to the world
® Processor to carry out the computations

©2017 Dr. Jeffrey A. Turkstra 12




Harvard

Input/output faciliies

Figure 4.1

©2017 Dr. Jeffrey A. Turkstra

(John) Von Neumann
architecture

= Developed during his June 1945 train
ride from Philadelphia to Los Alamos,
NM

= He had programmed the Mark 1 in
August 1944

= One memory for both data and
program

= Same I/O
® Same processor

©2017 Dr. Jeffrey A. Turkstra

Von Neumann

Figure 42

©2017 Dr. Jeffrey A. Turkstra 15

von Neumann vs Harvard
architectures

= von Neumann
= Same memory holds instructions and data
= Single bus between CPU and memory
= Flexible, more cost effective
= Harvard
= Separate memories for data and instructions
= Two busses
= Allows two simultaneous memory fetches
= Less flexible, memory is physically partitioned
= Both are stored program computer designs

©2017 Dr. Jeffrey A. Turkstra

Processors

= Device that performs automatic computation
= Fixed logic - single operation
= Traffic signal sequencer

= Selectable logic - user can select from multiple
hardwired functions

= Car with Econo and Sports modes for transmission

= Parameterized logic - computes fixed function
on variable user input

= Programmable video recorder
= Programmable logic processor
= CPU, GPU, etc

©2017 Dr. Jeffrey A. Turkstra 7

Stored programs

= Some memories can be written to only
once and then read many times

= Read-Only Memory (ROM)
= E.g., automobile engine control
= Some ROM can be re-written
= PROM, programmable ROM
= EPROM, erasable programmable ROM
= EEPROM, electrically erasable...
= Embedded systems often PROM
= Firmware upgrades

©2017 Dr. Jeffrey A. Turkstra




Fetch-Execute

= At the highest level, a processor does

this:

repeat forever {
FETCH, access the next program
instruction from location where it is
stored
EXECUTE, perform the actions
described by the instruction

©2017 Dr. Jeffrey A. Turkstra 19

Intel Core i7 Processor

©2017 Dr. Jeffrey A. Turkstra 20

©2017 Dr. Jefirey A Turkstra 21

Motherboard

©2017 Dr. Jeffrey A. Turkstra 22

Architecture basics

® [nstruction set
m Software instructions that the hardware
executes
= Functional organization

= How is the hardware partitioned into
specialized units?

©2017 Dr. Jeffrey A. Turkstra 23

Architecture basics

® [ ogic design
® Which logic circuits are used and how
are they organized?

= Implementation
= Technologies and packaging used

©2017 Dr. Jeffrey A. Turkstra 24




Hierarchical abstraction

® Hardware and software consist of
layers in a hierarchy
= To a good approximation

® Each layer hides (some of) its detail
from the layer above
= Principal of Abstraction

» Highest layer interacts with outside
world/end user

©2017 Dr. Jeffrey A. Turkstra 25

Instruction set
architecture

m [nstruction set architecture (ISA) is a
key level of abstraction
® Primary interface between hardware and
software
= Set of operations that a processor
performs

= Instruction format defines an
interpretation of bit strings

= Similar to ASCII, 2’s complement, IEEE
754, BCD, etc

©2017 Dr. Jeffrey A. Turkstra 26

Opcodes, operands, and
results
= A bit string, interpreted as an
instruction, specifies

® Operations to be performed

® Actual operand(s) and/or source(s) for
the operand(s) and their type(s)

® Destination for the result(s)

©2017 Dr. Jeffrey A. Turkstra 27

opcode operand 1 operand 2

Figure 5.1 The general instruction format that many processors use. The op-
code at the beginning of an instruction determines exactly which
operands follow.

©2017 Dr. Jeffrey A. Turkstra 28

preprocessed
—=| preprocessor |—#= source —a=| compiler |—#=

source
code

( relocatable
assembler |—#= object —a=| linker
code
object code
(functions)
in libraries

Figure 4.6 The steps used to translate a source program to the binary object

assembly
code

code representation used by a processor.

©2017 Dr. Jeffrey A. Turkstra 20

ISA Design

= Many tradeoffs
® Instruction length
= Number of registers
= Number of instructions
= etc

©2017 Dr. Jeffrey A. Turkstra 30




CISC vs RISC

= Complex Instruction Set Computer
® Reduced Instruction Set Computer
= RISC won

= Even Intel uses RISC micro-instructions

= They just have a really amazing instruction
decoder

©2017 Dr. Jeffrey A. Turkstra 31

Endianness

= Imagine memory is read from lowest address to
highest address

= Big Endian
= Most significant, “big,” byte comes first. Ie, placed
in lowest numbered memory location.
= “Big” end appears first when reading memory
= Network traffic
= PowerPC, ARM, SPARC, MIPS
= Little Endian
= Reverse of Big Endian: least significant,
“Little,” byte placed in lowest address
= “Little” end first

Example and comparison

® Consider OXOOCOF380 = Ox 00 CO F3 80 =
0b0000 0000 1100 0000 1111 0011 1000 0000

W_J

Most significant byte Least significant byte
Byte at given location

Addresses
arbitrarily start ':jeé?gs"z Little endian Big endian
at 0x00000000: |, 00000000 10000000 0000 0000
Locations
accessed in 0x00000001 11110000 1100 0000
arrow-indicated 0x00000002 11000000 11110011
sequence V' 0x00000003 00000000 1000 0000

©2017 by George 8. Adams I
Portons © 2017 b Jefrey A Turkstra

Memory hierarchy

r L %) s
/ c c G || wemory
( £
[ o . . [ I TR T
\ Cregsrers ]
n n h
) S ° Disk
Fogitor  Lowl1  Lovel2z  Lowld Momory o
woronco  Gacho Cach cho releronco
relerence reference  teference
Sz 00byes  64KB 250K 2-4MB 41668 4-16T8
Spesc | 300ps Ths  a0ms  10-20m 501001 s-0ms
(a) Memory herarhy for srver
™ 1 B
/ < © | wemory —
o e Memoy ¢ Storage
\Crogsen 1 1 ¢ h
11 "
s d FLASH
=t - e memory
- G S s reference
relerence  efersnco
Sie: SObyes  64KB  256KB 256-512M8 4-acp
Speed: S00ps 20 10-20ms 501000 25-s0us

(b) Memory hierarchy for  parsonal mobil device

©2017 Dr. Jeffrey A. Turkstra 35

© 2017 Dr. Jeffrey A. Turkstra 34
.
Registers

= Type of memory located inside CPU
® Can hold a single piece of data

= Data processing

= Control

= Many registers
= More later

©2017 Dr. Jeffrey A. Turkstra 36




Designing an ISA

bt
pgm. ctr it
adder

register
unit

datain Instruction
F——— add Add the integers in two registers and place the result
memory in a third register
s load Load an integer from the data memory into a register
o data store Store the integer in a register into the data memory
o - jump Jump to a new location in the instruction memory
out
Figure 6.1 Four example instructions, the operands each uses, and the mean-
ing of the instruction.
Figure 6.9 Mlustration of data paths ncluding data memory

©2017 Dr. Jeffrey A. Turkstra a7 ©2017 Dr. Jeffrey A. Turkstra

Example

operation  reg A regB  dstreg unused
Writing a program using these instructions is ead [ololoo] \ [ [ |
programming in assembly language; example cperation _regA__unused _dstreg oftset
Assembly instr. ; Comments oed ‘0 LICK D‘ ‘ l l ‘
load r2, 20(rl) ; r2 < Data Memory[20+rl] operation regA  regB  unused offset
load r3, 24(rl) ; r3 — Data Memory[24+rl] store [0707071 1] [ [ [ ]
add rd4, r2, r3 ; r4d -r2 + r3 operation  reg A unused unused offset
store r4, 28(rl) ; Data Memory[28+rl] « r4 jump 070 1 0 0] | | [ ]

jump 60(r7) ; Fetch at Instr. Memory[60+r7]

rl, r2, r3, r4 are registers in the data path

B e S e otation for the resul P 52 T by ovcntion o o o s

Memory[x] means the contents of memory at address x

+ means addition, with operand type defined by the instruction
(r1 +r2 is add with different data type than 28+r3)

©2017 Dr. Jeffrey A. Turkstra 39 ©2017 Dr. Jeffrey A. Turkstra

Assembly and its machine ADD
code w ”

ADD result data path

32-bit a2
pgm.ctr.  32bit
adder

register

instr. decoder data
operation reg BA[dst [ Yffset | memory
0000#fo0 10 1 1)l 1]o olo 0 000000000000 4 sdgr
Opcode PointerPointerPointer Unused offset, addr

arbitrarily set all 0 data
eut offset |
Figure 6.3 (2) An cxample add instruction as it appears o a programmer, Gperation
and (b) the instruction stored in memory.
@ ADD: ALU output is result, deliver to dst reg; result has

the meaning “integer” because this is an integer adder

Figure 6.9 Illustration of data paths including data memory

©2017 D Jeffrey A. Turkstra a1 ©2017 D Jeffrey A. Turkstra




LOAD STORE

M1 M3

32-bit a2
pgm.ctr.  32bit
adder

register
unit register

unit

data in

LOAD result
data path

data in

instr. decoder

instr. decoder data

memory

instruction
instruction

offset

operation

offset ST¢RE result|data p: f
operation

STORE: ALU output is pointer that must be sent to data memory along with
the value from reg B to be written into the data memory location; Result is a
ory bit string fggym reg_B written in memory, no inherent meaning gt all

LOAD: ALU output is pointer that must be sent to data memory, which then
produces copy of the location contents which, finally, must be written into dst_reg;
Result is a bt stgipg from memory: o inherent meaning at all

©2017 Dr. Jeffrey A. Turkstra a3 © cusr L vemey AL uiksua 44,

JUMP Intel Core n.ncr(.)archltecture
. - pipeline

JUMP result data path
register
unit

data in

data
memory

instr. decoder

instruction reg A

memory

reg B

out offset

operation

JUMP: ALU output is computed Next_instruction_pointer, must deliver to
Instruction_pointer_register; Result meaning is location of next instruction

on the execution path mory.

©2017 Dr. Jeffrey A. Turkstra a5 ©2017 Dr. Jeffrey A. Turkstra 46

Direct memory access MMU

= DMA allows other hardware ® Responsible for “refreshing” DRAM

subsystems to access main memory ® Translates virtual memory addresses
without going through the CPU to physical addresses
= Modern systems usually have DMA = Sometimes part of CPU

controller (MMU)

= Memory address register, byte count,
control, etc

= Responsible for ensuring accesses are
properly restrained

= Attack vector

©2017 D Jeffrey A. Turkstra a1 ©2017 D Jeffrey A. Turkstra 8

= Sometimes not
= Northbridge for Intel until recently

= [7/i5 have an Integrated Memory
Controller (IMC)




Page 70

©2017 Dr. Jeffrey A. Turkstra a9

Execution modes

= CPU hardware has several possible
modes

= At any one time, in one mode
= Modes specify

= Privilege level

= Valid instructions

® Valid memory addresses

= Size of data items

® Backwards compatibility

©2017 Dr. Jeffrey A. Turkstra 50

Rings

©2017 Dr. Jeffrey A. Turkstra 51

Ring -1

= Intel Active Management Technology
= Exists for other architectures as well
= Runs on the Intel Management Engine (ME)
= [solated and protected coprocessor
= Embedded in all current Intel chipsets
= ARC core
= Qut-of-band access
= Direct access to Ethernet controller
= Requires vPro-enabled CPU/Motherboard/Chipset

©2017 Dr. Jeffrey A. Turkstra 52

Ring -1

= __.if you can exploit it, you win.
= CVE-2017-5689
= Go read about it

©2017 Dr. Jeffrey A. Turkstra 53

Trusting trust

® Reflections on Trusting Trust
= by Ken Thompson
= Read this too

©2017 Dr. Jeffrey A. Turkstra 54




How to change between
modes

= Automatic
= Hardware interrupts
= OS-specified handlers
= “Manual”
= Initiated by software, typically OS
m System calls, signals, and page faults

= Sometimes mode can be set by
application

©2017 Dr. Jeffrey A. Turkstra 55

Paging and Virtual
Memory

= later

©2017 Dr. Jeffrey A. Turkstra

Questions?

©2017 Dr. Jefirey A Turkstra 57




