

© 2017 Dr. Jeffrey A. Turkstra 1

CS 50011: Introduction to Systems IICS 50011: Introduction to Systems II

Lecture 2: More *nixLecture 2: More *nix

Prof. Jeff TurkstraProf. Jeff Turkstra

 2

I/O redirection - reading

 To redirect input for a program or
command,
< file n < file n is the file
descriptor
<< file n << file n is the file
descriptor

 Example:
mail jeff@purdue.edu < my_document

 3

I/O redirection - writing

 We can redirect the output from a
program or command too!
> file and n > file Redirect output to file
>> file and n >> file Appends output to file
>| file and n >| file Overrides the

noclobber option, if set
>& number Redirects the output to file

descriptor number

 4

I/O redirection - pipes

 Pipes enable a series of programs to work
together
command_1 | command_2 | … | command_n

 Functions a lot like > except stdout from
command_n-1 is redirected to stdin of command_n.

 Example:
$ ls -l | wc -l
46

counts how many lines of text ls just
output

 5

tee command

 Check out the unix tee command…
any_command | tee save_out
 Saves a copy of all output (sent to

standard out) in the file save_out
tee save_in | any_command
 Saves a copy of all input (sent to

standard in) in the file save_in

 6

grep command

 Used to search files for lines of information.
Many, many flags - see the man page.
grep -flags regular_expression filename

 Useful flags…
-x Exact match of line
-i Ignore upper/lower case
-c Only count the number of lines which
match
-n Add relative line numbers
-b Add block numbers
-v Output all lines which do not match

 7

Simple regular
expressions

 Regular expressions express patterns. They are
used to find and/or extract pieces of information
from a string.
. Matches any character
^ Start of line
$ End of line
\ Escape character
[list] Matches any character in the list
[^list] Matches any character not in the list
* Match zero or more occurrences of the
previous regular expression
\{min,max\} Matches at least min and at most max
occurrences of the previous regular expression

 8

Examples
 grep "^string$" file_name

collects all lines which contain only string
 grep " … " file_name

collects all lines which have any three
characters surrounded by spaces

 grep " [0-9]\{1,3\} " file_name

collects all lines containing a sequence of
one to three digits surrounded by spaces

 grep "^x*[abc]" file_name

collects all lines which start with zero or
more x's followed by a single a, b, or c

 9

More examples

 Let's pretend we have a file named data1…
12
12 345
567
3 abd
asdf

 And this script…
#! /bin/bash # begins with 1 or 2
grep "^[0-9]\{1,2\} " data1 # digits followed by
exit 0 # a space

 We should get this output…
12 345
3 abd

 10

-v option, inverting the
match

 Let's pretend we have a file named data1…
12
12 345
567
3 abd
asdf

 And this script…
#! /bin/bash
grep -v "^[0-9]\{1,2\} " data1
exit 0

 We should get this output…
12
567
asdf

 11

-c option, counting the
matches

 Let's pretend we have a file named data1…
12
12 345
567
3 abd
asdf

 And this script…
#! /bin/bash
grep -c "^[0-9]\{1,2\} " data1
exit 0

 We should get this output…
2

 12

-n option, adding line
numbers

 Let's pretend we have a file named data1…
12
12 345
567
3 abd
asdf

 And this script…
#! /bin/bash
grep -n "^[0-9]\{1,2\} " data1
exit 0

 We should get this output…
2:12 345
4:3 abd

 13

Using grep inside a
script

#! /bin/bash
if (($# != 1)); then
 echo "Usage: $0 <user_id>"
 exit 1
fi
USER="$1"
if echo "${USER}" Id_File > /dev/null
then
 echo "Bad way: ${USER} in file"
else
 echo "Bad way: ${USER} not in file"
fi
if grep "^${USER}$" Id_File > /dev/null
then
 echo "Good way: ${USER} in file"
else
 echo "Good way: ${USER} not in file"
fi
exit 0

 14

Output

$ cat Id_File $ Check
sam Usage: Check <user_id>
maryann $ Check jeff
john Bad way: jeff in file
jeff Good way: jeff in file
jeffrey $ Check son
bill Bad way: son in file
william Good way: son not in file
peterson

 15

head

 Collects the first n lines of a file with
n defaulting to 10 if unspecified
head [-n] file

 Examples…
head -30 yuk # top 30 lines
head yuk # top 10 lines
head * # top 10 lines of every file

 16

tail

 tail [+/-[n] [b|c|l] [-f]] file
delivers n units from the file

+n counting from the top
-n counting from the end
n defaults to -10 if unspecified

counting by
b blocks
c characters
l lines (default)

-f means follow - infinite trailing output
(use ctrl-c to stop)

 Has buffer limitations - see the man page

 17

Examples

 tail +10 yuk # all lines beyond line 10
tail -30 yuk # last 30 lines
tail -30c yuk # last 30 characters
tail -30f yuk # last 30 lines,
continuing outputting any added lines
tail -30 * # last 30 lines of all files

 18

cut

 Used to make vertical cuts across a
file
cut -flags columns or field filename

 Useful flags
-c characters
-d field delimiter
-f fields

 See man page for more information

 19

Examples

 Given a file data2,
12345 7890 abcd efgb
This is line one
this is no big deal

 …and this script,
#! /bin/bash
cut -c1-5,8- data2
echo '------'
cut -d' ' -f2-3 data2
exit 0

 We get this output:
12345890 abcd efgb
This line one
this no big deal

7890 abcd
is line
is no

 20

Another example

 Here's another example:
#! /bin/bash
DAY_OF_WEEK="$(date | cut -d' ' -f1-1)"
MONTH="$(date | cut -d' ' -f2-2)"
DAY="$(date | cut -d' ' -f3-3)"
YEAR="$(date | cut -d' ' -f6-)"
echo "Date: $(date)"
echo "Month: ${MONTH}"
echo "Day: ${Day}"
echo "Year: ${Year}"
echo "Day of the week: ${DAY_OF_WEEK}"
exit 0

 Which outputs…
Date: Mon Jul 22 16:01:17 EST 1996
Month: Jul
Day: 22
Year: 1996
Day of the week: Mon

 21

paste

 Used to combine lines from two files together
paste [-dlist] file1 file2 …

 By default concatenates corresponding lines
of the files together using a tab as the
separator

 Example:
paste -d" " x y z
concatenates the corresponding lines of the
files x, y, and z together using the list of
separators circularly. In this case the list only
contains a single space.

 22

More examples
 paste -s [-d list] file1 file2 …

merges lines together serially (one file
at a time)

 paste -s -d" \n" yuk

pastes each pair of lines in the file yuk
together
 the list specified with -d is a space followed

by a newline
 See man page for more options and

information

 23

wc

 Word count
wc -[c|w|l] file

 Used to count
-c characters
-l lines
-w words (separated by whitespace)

 Default is all three

 24

Example

#! /bin/bash Output:
wc x.c 301 878 8382 x.c
wc -l x.c 301 x.c
wc -w x.c 878 x.c
wc -c x.c 8382 x.c
NL=$(wc x.c) 301 878 8382 x.c
echo ${NL} " 301 878 8382 x.c"
echo "\"${NL}\"" " 301"
LL=$(wc -l < x.c) 301
echo "\"${LL}\""
echo ${LL}
exit 0

 25

A quick look at sort

 Read the man page for more information
 A few very useful flags:
-u unique lines only
-txfield separator x (default is whitespace)
-b ignore leading blanks
-r reverse sort
-n numbers not characters
-k sort on fields (up to 10 -k options
allowed)
 Note: field numbers begin with 1

 26

sort example

 This example,
#! /bin/bash
cat data
echo
sort data3
exit 0

 Yields this output:
1 a 5 0 b 3
2 b 4 1 a 5
3 a 4 1 a 5
1 b 4 1 b 4
0 b 3 2 b 4
1 a 5 3 a 4

 27

Another example

 This example,
#! /bin/bash
cat data
echo
sort -u data3
exit 0

 Yields this output:
1 a 5 0 b 3
2 b 4 1 a 5
3 a 4 1 b 4
1 b 4 2 b 4
0 b 3 3 a 4
1 a 5

 28

-u and -k example

 This example,
#! /bin/bash
cat data
echo
sort -u -k 2 data3
exit 0

 Yields this output:
1 a 5 3 a 4
2 b 4 1 a 5
3 a 4 0 b 3
1 b 4 1 b 4
0 b 3
1 a 5

 29

Another -u and -k
example

 This example,
#! /bin/bash
cat data
echo
sort -u -k 2,2 data3
exit 0

 Yields this output:
1 a 5 1 a 5
2 b 4 0 b 3
3 a 4
1 b 4
0 b 3
1 a 5

 30

Specifying field order

 This example,
#! /bin/bash
cat data
echo
sort -ur -k 2,2 -k 3,3 -k 1,1 data3
exit 0

 Yields this output:
1 a 5 2 b 4
2 b 4 1 b 4
3 a 4 0 b 3
1 b 4 1 a 5
0 b 3 3 a 4
1 a 5

 31

Beating the dead horse

 This example,
#! /bin/bash
cat data
echo
sort -k 3,3 -k 1,1 -k 2,2 data3
echo
sort -k 3bn,3 -k 1bn,1 -k 2b,2 data3
exit 0

 Yields this output:
1 a 5 3 a 14 11 b 4
11 b 4 11 b 4 1 a 5
12 c 40 12 c 40 3 a 14
2 a 40 2 a 40 2 a 40
21 c 51 1 a 5 12 c 40
3 a 14 21 c 51 21 c 51

 32

Questions?

