
==
 CS 50011 INTRODUCTION TO SYSTEMS II Summer 2017
 Lab #3
==

 Name: _____________________________________

==
Part 0: Introduction
--
NOTE: A significant portion of this lab assignment is based on a
laboratory projected by Prof. Gustavo Rodriguez-Rivera.

1. Copy this week’s lab files (all files in ~jeff/labfiles/Lab03) into
your Lab03 subdirectory. Be sure to use “cp -r” to recursively copy
the directories as well.

==
Part 1: Basic Web Server (50 points)
--
For this portion of the lab, you will build a functional HTTP/1.0
server. That is, a webserver that implements the HTTP/1.0 specification.

We suggest that you carefully study the daytime server and client
examples provided in lecture 10.

You will need to become familiar with the socket API including functions
like: getservbyname(), getprotobyname(), bind(), listen(), accept(),
etc.

Basic GET
An HTTP client issues a “GET” request to a server when it wishes to
retrieve a file. The general syntax of such a request appears below:
GET /path/to/file HTTP/1.0\r\n
{Additional Header Information\r\n}
\r\n

Note the whitespace, and the trailing carriage return and linefeed
character. For this lab, the additional header information may safely be
ignored.

The file does not need to be explicitly specified. It if is omitted, it
should default to “index.html”. For more advanced webservers, there is
generally a DirectoryIndex definition that includes one or more index
files to be attempted in order.

Note that a request is ended with two carriage return and linefeed
character pairs.

Response
The HTTP server parses a request in the above format, identifies and
identifies the file to transmit. Before sending the file, however, the
HTTP server must send a response header to the client. The following
illustrates a typical response from an HTTP server, assuming the
requested file is found and accessible:
HTTP/1.1 200 OK\r\n
Server: server-type\r\n
Content-type: content-type\r\n
{Additional Header Information\r\n}
\r\n
<Requested File Data>

server-type often specifies the platform and OS (eg, “Apache/2.4.6
(CentOS)”). For this lab, set it to “CS50011/1.0”

document-type indicates to the client the type of document being sent.
This should be “text/html” for an html document, “image/gif” for a gif
file, “text/plain” for plain text, etc.

The additional header information may again be ignored for this lab.

<Requested File Data> is obviously the requested file’s contents.

Errors
Should the requested file not exist, the server replies with:
HTTP/1.1 404 File Not Found\r\n
Server: server-type\r\n
Content-type: content-type\r\n
\r\n
<Error Message>

Content-type in this case refers to the format of the error message. For
this lab, set it “text/plain”. Error message is a human readable
description of the error in plain text/html.

URL to File Mapping
Webservers map URLs to local files. This mapping is generally specified
in a configuration file in the form of a “DocumentRoot” all URLs are
relative to the DocumentRoot. Eg, if one issues “GET /index.html” and
DocumentRoot is “/var/www/html”, the actual file fetched is located at
“/var/www/html/index.html”.

Webservers also ensure that requests do not fall outside of the
DocumentRoot. Consider the request “GET /../../../etc/passwd”.

Your DocumentRoot should be hard coded.

You should also specially handle requests for “icons/file”. These
requests should be served out of “http-root-dir/icons”.

All other URLs should be served from “http-root-dir/htdocs”.

Actual URLs should not include these paths.

HINT: Look at realpath().

Again, if no file is specified, it should default to “index.html”.

Sample Program
You have been provided with a tarball for this part – lab3.tar.gz – in
the ~jeff/labfiles/Lab03 directory. Create your own Lab03 subdirectory
and untar its contents inside of it.
tar -zxvf lab3.tar.gz

You can execute “make” to build the daytime-server. Play with it, and
use it as a starting point to help build your webserver. There is also a
simple client, client.c.

The Server
Create an iterative HTTP server that implements the following basic
algorithm:
 Open a passive socket
 while (forever) {
 accept() new TCP connection;

 read request from socket and parse it;

 frame the appropriate response header depending on whether the URL
 is valid and accessible;

 write the response header to the TCP connection;

 if appropriate, write the requested document;

 close() the TCP connection;
 }

This server is not concurrent. That is, it is not capable of serving
more than one client at a time. The remaining requests are queued.

Make a copy of the daytime server named “myhttpd.c”. Modify the Makefile
to automatically build it. If you wish, you may create this program
using C++.

Part of the score for this part includes a functioning Makefile.

As an aside, RFC 1945 defines the HTTP/1.0 specification. It may be
worth a look.

==
Part 2: Fork It (25 points)
--
Add concurrency to the above webserver. We will go with simple
concurrency in this part – use fork() to create a child process to
handle each incoming request. The parent should immediately resume
waiting for more incoming requests while the child takes care of parsing
and delivering the response to the client.

Be sure that you do not accumulate a large number of zombie processes.
You are responsible for reaping the dead children.

There are a number of online resources available that help with this.

For a hardcover resource, Chapter 11 in Doug Comer’s “Internetworking
with TCP/IP – Vol 3” may be particularly useful.

Name your new server “myhttpdconc.c”. Again, alter the Makefile to
compile it.

==
Part 3: Directory Browsing (25 points)
--
For this part, should the requested document be a directory, your HTTP
server should return an HTML document with hyperlinks to the contents of
the directory. You should also be able to recursively browse
subdirectories contained in this directory. An example of how this might
look is available here:

https://www.cs.purdue.edu/homes/grr/cs422-root-dir-test/htdocs/

You may ignore the cgi-bin directories for our purposes.

https://www.cs.purdue.edu/homes/grr/cs422-root-dir-test/htdocs/

