
==
 CS 50011 INTRODUCTION TO SYSTEMS II Summer 2017
 Lab #2
==

 Name: _____________________________________

==
Part 0: Introduction
--
1. Create a Lab02 directory inside your home directory. All solutions to

the programming exercises should be stored here.

2. Copy this week’s lab files (all files in ~jeff/labfiles/lab02) into
your Lab02 subdirectory.

3. Complete the tutorial up through the “Exploit” section located at
 https://turkeyland.net/projects/overflow/index.php

https://turkeyland.net/projects/overflow/index.php

==
Part 1: Shell Code (25 points)
--
[20 points] Come up with two alternative pieces of shell code that
accomplish the same task as the chmod() shell code in the tutorial.
Place each in “myshellcode1.c” and “myshellcode2.c”. It should be in the
following format:

int main() {
__asm__(
“your_assembly_here”
);
}

[10 points] Write the hexadecimal payload for each in the file
“payload”.

==
Part 2: Hack a grading program (25 points)
--
Programs are not necessarily written in a secure manner – allowing
individuals to make them do things that are entirely unexpected.

You are provided with a sample “grading module.” Below is what the
test() function looks like:

static int test()
{
 char Garbage[*];
 int i;
 int Score = 75;
 YourFunc();
 i = 7;
 Score = 50;
 return Score;
}

* The size of the character array Garbage is determined by your login
and often times different from that of other students.

Hack the module for 100.

Note that after you link against the grading module, you should run the
executable in the following manner:
$./executable_name yourlogininlowercase

This is how your program will be graded.

Functions to write:
void YourFunc();

Do whatever you want to make the test module give you a score of 100.

hack_test.o is included in the labfiles directory. You should link
against it.

==
Part 3: Advanced C (50 points)
--
The purpose of this part is to give you experience in using generic
functions to do traversal of trees. You'll customize the functions by
passing in pointers to functions that will do comparisons and
operations. We'll also be using storage class qualifiers to indicate
which data are modifiable or not.

You know how to write functions to build, maintain and traverse trees
but, if you're going to ever be able to build large software projects,
it would be convenient to be able to encapsulate these functions in a
library and just use them instead of having to write them over and over
again. When you're writing a program, you'd like to be able to say "I'd
like a tree of gadgets there." Some programming languages have
mechanisms to permit the programmer to write something once and then use
it for many things thereafter. If you've ever seen or heard of C++
template classes you'll know what we're talking about.

Even with languages that support reuse of data structures and
algorithms, the programmer must take care to make sure that the resource
to be reused will behave as expected with no bizarre side effects. That
often turns out to be a very tedious undertaking. Take a look at the
code for the C++ STL (Standard Template Library) sometime if you want to
see a good example.

Since this class involves less with programming than it does with simply
understanding how the computer works, we're not going to just give you
code to do generic tree traversal and manipulation and have you write
programs using it. We're going to ask you to write the generic
functions.

Actually the things you write here will not be completely generic. We'll
only work with one kind of tree node. To do more than this, we'd have to
use casts. Once you say "goodbye" to strongly typed programs, you also
say "goodbye" to ease of debugging.

The data structures are declared this way:

typedef struct Person
{
 char *Name;
 unsigned int Phone;
 char *Office;
 char *Login;
 char *Title;
} Person;

typedef struct Tree
{
 struct Tree *Left_Ptr;
 struct Tree *Right_Ptr;
 struct Person *Data;
} Tree;

typedef enum {
 LNR,
 RNL,
 NLR,
 LRN
} Tree_Traverse_Method;

Examine "lab02.h" carefully. It contains declarations for the data
structures you'll use as well as prototypes for the functions you'll
write.

There are three basic operations that you might want to do with trees:
Insertion, Traversal and Deletion. Deletion is pretty straightforward
but Insertion and Traversal are ones you might want to customize. For
instance, if the data you're inserting has multiple fields, which one do
you want to sort by? If you're traversing a tree, what do you want to do
with it? It would be convenient to write functions that generically
insert and traverse.

You should write the following functions:

Person *Person_Create (const char *, unsigned int, const char *,
 const char *, const char *);

This tedious function will dynamically allocate memory for a Person as
well as space for each of its pointer fields. Do the obvious things to
make sure that each of the arguments is valid and that each allocation
was a success. Return the pointer to the newly allocated structure.

void Person_Delete(Person **);

This function accepts a pointer to a pointer to a Person structure that
is to be freed. The function should also free every field in the Person
structure. It should also set the pointer that the argument points to to
NULL.

This function should assert that the argument is not NULL.

Tree *Tree_Create (Person *);

Dynamically allocate memory for a Tree structure. Copy the argument into
the Data field. The Left_Ptr and Right_Ptr fields should be initialized
to NULL. The function should return a pointer to the newly allocated
element. Note that the only memory allocation to be performed for this
function is the one to allocate the Tree structure.

This function should assert that the pointer argument is not NULL.
This function should use assert that the memory allocation is not NULL.

void Tree_Insert (Tree **, Person *,
 int (*)(const Person *, const Person *));

The first argument is a pointer to the pointer to the root Tree element.
The second argument is a pointer to the new Person structure to be
inserted. The third argument is a pointer to a function that will be
used to order the insertion. Basically, this function will usually be
called this way:

Tree_Insert(&Root, Person_Create(...), Sort_Person_By_Name);

This means that you can call this function initially when Root is NULL
and it should set the Root variable to point to the newly inserted
element. When the proper place to insert the new Person structure is
found, create a Tree structure, to hold the pointer to the Person
structure and attach it to the tree.

You should assert that none of the arguments are NULL.

Tree *Tree_Find(Tree *, const Person *,
 int (*)(const Person *, const Person *));

This is a recursive function that will search for a Tree node whose Name
field matches the second argument. If a matching node is found, the
function should return a pointer to the node. If no match is found, the
function should return NULL. This function will most likely be invoked
in the following way:
Person_Ptr = Tree_Find(Root, &One_Person, Sort_Person_By_Name);

The function should assert that the second and third arguments is not
NULL. It's OK for the first argument to be NULL.

void Tree_Traverse(Tree *, Tree_Traverse_Method, void (*)(Person *));

This function accepts a pointer to the root element of a tree to be
traversed. The second argument is an indicator that says in what order
the tree is to be traversed (e.g. LNR: left-node-right, RNL: right-node-
left, LRN: left-right-node or NLR: node-left-right). The third argument
is a pointer to a function that says what to do with a Person field. For
instance, one might create a function that printed the Name field and
then pass it as the third argument.

void Tree_Delete(Tree **);

Delete the entire Tree and its Person fields recursively. The function
should call Person_Delete to delete the Person fields. After the
function returns, the root of the tree that was passed by pointer should
be set to NULL. e.g. if the function is called this way:
Tree_Delete(&Root);

then Root should be set to NULL after the function is finished. The
function should assert that the first argument is not NULL. However,
keep in mind that it's OK for the first argument to point to a NULL
pointer.

int Sort_Person_By_XXXX(const Person *, const Person *);

You'll create a function like this for each field in the Person
structure where "XXXX" is replaced by the name of the field. These
functions should work like strcmp():

• If the field of the element in the first argument is less than the
same field of the second argument, return a negative number.

• If the field of the element in the first argument is equal to the
same field of the second argument, return a zero.

• If the field of the element in the first argument is greater than
the same field of the second argument, return a positive number.

This function should assert that neither argument is NULL.

We’ve supplied an input file called "Faculty" that you can use for
lab02_main.c.

We also provide a header file, "lab02.h" for you. It contains prototypes
for each of the functions that you will write as well as #definitions.

Note that since you're not using any file I/O operations, you don't need
to include stdio.h. For this assignment, the only other header files
you'll need are malloc.h, assert.h and string.h.

There are no error codes for this assignment but watch out for the
Tree_Traversal_Method.

To start working, make sure you have copied the Makefile from
~jeff/labfiles/lab02 into your account and write lab02.c. When you are
ready to try your work, type either “make lab02_main” or “make
lab02_test” to build programs that can be used to test your code. Note
that we will not provide the lab02_test.o file for you immediately. You
should first practice using lab02_main.c to test your code.

Standard rules:
• You may add any #includes you need to the top of your hw11.c file.
• You may not create any global variables other than the ones that

are provided for you. Creation of additional global variables will
impact your grade.

• You should check for any failures and return an appropriate value.
• You should not assume any maximum size for the input files. The

test program will generate files of arbitrary size.
• Don't look at anyone else's source code. Do not work with any

other students.

The operation of your functions will be graded out of 100 points. The
point breakdown will be determined by the test program.

