
Python Programming, 2/e 1

Python Programming:
An Introduction to
Computer Science

Chapter 6

Defining Functions

Python Programming, 2/e 2

Objectives

� To understand why programmers divide
programs up into sets of cooperating
functions.

� To be able to define new functions in
Python.

� To understand the details of function
calls and parameter passing in Python.

Python Programming, 2/e 3

Objectives (cont.)

� To write programs that use functions to
reduce code duplication and increase
program modularity.

Python Programming, 2/e 4

The Function of Functions

� So far, we’ve seen four different types
of functions:
� Our programs comprise a single function
called main().

� Built-in Python functions (abs)

� Functions from the standard libraries
(math.sqrt)

� Functions from the graphics module
(p.getX())

Python Programming, 2/e 5

The Function of Functions

� Having similar or identical code in more
than one place has some drawbacks.
� Issue one: writing the same code twice or
more.

� Issue two: This same code must be
maintained in two separate places.

� Functions can be used to reduce code
duplication and make programs more
easily understood and maintained.

Python Programming, 2/e 6

Functions, Informally

� A function is like a subprogram, a small
program inside of a program.

� The basic idea – we write a sequence of

statements and then give that sequence
a name. We can then execute this
sequence at any time by referring to
the name.

Python Programming, 2/e 7

Functions, Informally

� The part of the program that creates a
function is called a function definition.

� When the function is used in a
program, we say the definition is called
or invoked.

Python Programming, 2/e 8

Functions, Informally

� Happy Birthday lyrics…
def main():

print("Happy birthday to you!")

print("Happy birthday to you!")

print("Happy birthday, dear Fred...")

print("Happy birthday to you!")

� Gives us this…
>>> main()

Happy birthday to you!

Happy birthday to you!

Happy birthday, dear Fred...

Happy birthday to you!

Python Programming, 2/e 9

Functions, Informally

� There’s some duplicated code in the

program! (print("Happy birthday to you!"))

� We can define a function to print out
this line:
def happy():

print("Happy birthday to you!")

� With this function, we can rewrite our
program.

Python Programming, 2/e 10

Functions, Informally

� The new program –
def singFred():

happy()

happy()

print("Happy birthday, dear Fred...")

happy()

� Gives us this output –
>>> singFred()

Happy birthday to you!

Happy birthday to you!

Happy birthday, dear Fred...

Happy birthday to you!

Python Programming, 2/e 11

Functions, Informally

� Creating this function saved us a lot of
typing!

� What if it’s Lucy’s birthday? We could

write a new singLucy function!
def singLucy():

happy()

happy()

print("Happy birthday, dear Lucy...")

happy()

Python Programming, 2/e 12

Functions, Informally

� We could write a main program to sing
to both Lucy and Fred
def main():

singFred()

print()

singLucy()

� This gives us this new output
>>> main()

Happy birthday to you!

Happy birthday to you!

Happy birthday, dear Fred..

Happy birthday to you!

Happy birthday to you!

Happy birthday to you!

Happy birthday, dear Lucy...

Happy birthday to you!

Python Programming, 2/e 13

Functions, Informally

� This is working great! But… there’s still

a lot of code duplication.

� The only difference between singFred
and singLucy is the name in the third
print statement.

� These two routines could be collapsed
together by using a parameter.

Python Programming, 2/e 14

Functions, Informally

� The generic function sing
def sing(person):

happy()

happy()

print("Happy birthday, dear", person + ".“)

happy()

� This function uses a parameter named
person. A paramater is a variable that is
initialized when the function is called.

Python Programming, 2/e 15

Functions, Informally

� Our new output –
>>> sing("Fred")

Happy birthday to you!

Happy birthday to you!

Happy birthday, dear Fred.

Happy birthday to you!

� We can put together a new main
program!

Python Programming, 2/e 16

Functions, Informally

� Our new main program:
def main():

sing("Fred")

print()

sing("Lucy")

� Gives us this output:
>>> main()

Happy birthday to you!

Happy birthday to you!

Happy birthday, dear Fred.

Happy birthday to you!

Happy birthday to you!

Happy birthday to you!

Happy birthday, dear Lucy.

Happy birthday to you!

Python Programming, 2/e 17

Future Value with a Function

� In the future value graphing program,
we see similar code twice:
Draw bar for initial principal

bar = Rectangle(Point(0, 0), Point(1, principal))

bar.setFill("green")

bar.setWidth(2)

bar.draw(win)

bar = Rectangle(Point(year, 0), Point(year+1, principal))

bar.setFill("green")

bar.setWidth(2)

bar.draw(win)

Python Programming, 2/e 18

Future Value with a Function

� To properly draw the bars, we need
three pieces of information.

� The year the bar is for

� How tall the bar should be

� The window the bar will be drawn in

� These three values can be supplied as
parameters to the function.

Python Programming, 2/e 19

Future Value with a Function

� The resulting function looks like this:
def drawBar(window, year, height):

Draw a bar in window starting at year with given height

bar = Rectangle(Point(year, 0), Point(year+1, height))

bar.setFill("green")

bar.setWidth(2)

bar.draw(window)

� To use this function, we supply the three
values. If win is a Graphwin, we can draw a
bar for year 0 and principal of $2000 using
this call:

drawBar(win, 0, 2000)

Python Programming, 2/e 20

Functions and Parameters:
The Details

� It makes sense to include the year and
the principal in the drawBar function,
but why send the window variable?

� The scope of a variable refers to the
places in a program a given variable
can be referenced.

Python Programming, 2/e 21

Functions and Parameters:
The Details

� Each function is its own little subprogram.
The variables used inside of a function are
local to that function, even if they happen to
have the same name as variables that appear
inside of another function.

� The only way for a function to see a variable
from another function is for that variable to
be passed as a parameter.

Python Programming, 2/e 22

Functions and Parameters:
The Details

� Since the GraphWin in the variable
win is created inside of main, it is not
directly accessible in drawBar.

� The window parameter in drawBar
gets assigned the value of win from
main when drawBar is called.

Python Programming, 2/e 23

Functions and Parameters:
The Details

� A function definition looks like this:
def <name>(<formal-parameters>):
<body>

� The name of the function must be an
identifier

� Formal-parameters is a possibly empty
list of variable names

Python Programming, 2/e 24

Functions and Parameters:
The Details

� Formal parameters, like all variables
used in the function, are only accessible
in the body of the function. Variables
with identical names elsewhere in the
program are distinct from the formal
parameters and variables inside of the
function body.

Python Programming, 2/e 25

Functions and Parameters:
The Details

� A function is called by using its name
followed by a list of actual parameters
or arguments.
<name>(<actual-parameters>)

� When Python comes to a function call,
it initiates a four-step process.

Python Programming, 2/e 26

Functions and Parameters:
The Details

� The calling program suspends execution at
the point of the call.

� The formal parameters of the function get
assigned the values supplied by the actual
parameters in the call.

� The body of the function is executed.

� Control returns to the point just after
where the function was called.

Python Programming, 2/e 27

Functions and Parameters:
The Details

� Let’s trace through the following code:
sing("Fred")

print()

sing("Lucy")

� When Python gets to sing("Fred"),
execution of main is temporarily suspended.

� Python looks up the definition of sing and

sees that it has one formal parameter,
person.

Python Programming, 2/e 28

Functions and Parameters:
The Detail

� The formal parameter is assigned the
value of the actual parameter. It’s as if
the following statement had been
executed:
person = "Fred"

Python Programming, 2/e 29

Functions and Parameters:
The Details

Note that the variable person has just

been initialized.

Python Programming, 2/e 30

Functions and Parameters:
The Details

� At this point, Python begins executing the
body of sing.

� The first statement is another function call, to
happy. What happens next?

� Python suspends the execution of sing and
transfers control to happy.

� happy consists of a single print, which is
executed and control returns to where it left
off in sing.

Python Programming, 2/e 31

Functions and Parameters:
The Details

� Execution continues in this way with two
more trips to happy.

� When Python gets to the end of sing,
control returns to main and continues
immediately following the function call.

Python Programming, 2/e 32

Functions and Parameters:
The Details

� Notice that the person variable in sing has
disappeared!

� The memory occupied by local function
variables is reclaimed when the function
exits.

� Local variables do not retain any values from
one function execution to the next.

Python Programming, 2/e 33

Functions and Parameters:
The Details

� The next statement is the bare print,

which produces a blank line.

� Python encounters another call to
sing, and control transfers to the
sing function, with the formal
parameter “Lucy”.

Python Programming, 2/e 34

Functions and Parameters:
The Details

� The body of sing is executed for Lucy
with its three side trips to happy and
control returns to main.

Python Programming, 2/e 35

Functions and Parameters:
The Details

Python Programming, 2/e 36

Functions and Paramters: The
Details

� One thing not addressed in this
example was multiple parameters. In
this case the formal and actual
parameters are matched up based on
position, e.g. the first actual parameter
is assigned to the first formal
parameter, the second actual parameter
is assigned to the second formal
parameter, etc.

Python Programming, 2/e 37

Functions and Parameters:
The Details

� As an example, consider the call to
drawBar:
drawBar(win, 0, principal)

� When control is passed to drawBar,

these parameters are matched up to
the formal parameters in the function
heading:
def drawBar(window, year, height):

Python Programming, 2/e 38

Functions and Parameters:
The Details

� The net effect is as if the function body
had been prefaced with three
assignment statements:

window = win

year = 0

height = principal

Python Programming, 2/e 39

Getting Results from a
Function

� Passing parameters provides a
mechanism for initializing the variables
in a function.

� Parameters act as inputs to a function.

� We can call a function many times and
get different results by changing its
parameters.

Python Programming, 2/e 40

Functions That Return Values

� We’ve already seen numerous

examples of functions that return values
to the caller.
discRt = math.sqrt(b*b – 4*a*c)

� The value b*b – 4*a*c is the actual
parameter of math.sqrt.

� We say sqrt returns the square root of
its argument.

Python Programming, 2/e 41

Functions That Return Values

� This function returns the square of a number:

def square(x):

return x*x

� When Python encounters return, it exits the
function and returns control to the point
where the function was called.

� In addition, the value(s) provided in the
return statement are sent back to the
caller as an expression result.

Python Programming, 2/e 42

Functions That Return Values

� >>> square(3)

9

� >>> print(square(4))

16

� >>> x = 5

>>> y = square(x)

>>> print(y)

25

� >>> print(square(x) + square(3))

34

Python Programming, 2/e 43

Functions That Return Values

� We can use the square function to write
a routine to calculate the distance
between (x1,y1) and (x2,y2).

� def distance(p1, p2):

dist = math.sqrt(square(p2.getX() - p1.getX()) +

square(p2.getY() - p1.getY()))

return dist

Python Programming, 2/e 44

Functions That Return Values

� Sometimes a function needs to return
more than one value.

� To do this, simply list more than one
expression in the return statement.

� def sumDiff(x, y):
sum = x + y
diff = x – y
return sum, diff

Python Programming, 2/e 45

Functions That Return Values

� When calling this function, use
simultaneous assignment.

� num1, num2 = eval(input("Enter two numbers (num1, num2) "))

s, d = sumDiff(num1, num2)

print("The sum is", s, "and the difference is", d)

� As before, the values are assigned
based on position, so s gets the first
value returned (the sum), and d gets
the second (the difference).

Python Programming, 2/e 46

Functions That Return Values

� One “gotcha” – all Python functions

return a value, whether they contain a
return statement or not. Functions
without a return hand back a special
object, denoted None.

� A common problem is writing a value-
returning function and omitting the
return!

Python Programming, 2/e 47

Functions That Return Values

� If your value-returning functions
produce strange messages, check to
make sure you remembered to include
the return!

Python Programming, 2/e 48

Functions that Modify
Parameters

� Return values are the main way to send
information from a function back to the caller.

� Sometimes, we can communicate back to the
caller by making changes to the function
parameters.

� Understanding when and how this is possible
requires the mastery of some subtle details
about how assignment works and the
relationship between actual and formal
parameters.

Python Programming, 2/e 49

Functions that Modify
Parameters

� Suppose you are writing a program that
manages bank accounts. One function
we would need to do is to accumulate
interest on the account. Let’s look at a

first-cut at the function.
� def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

Python Programming, 2/e 50

Functions that Modify
Parameters

� The intent is to set the balance of the
account to a new value that includes
the interest amount.

� Let’s write a main program to test this:
def test():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

Python Programming, 2/e 51

Functions that Modify
Parameters

� We hope that that the 5% will be added
to the amount, returning 1050.

� >>> test()

1000

� What went wrong? Nothing!

Python Programming, 2/e 52

Functions that Modify
Parameters

� The first two lines of
the test function
create two local
variables called
amount and rate

which are given the
initial values of
1000 and 0.05,

respectively.

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

def test():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

Python Programming, 2/e 53

Functions that Modify
Parameters

� Control then transfers
to the addInterest
function.

� The formal parameters
balance and rate are
assigned the values of
the actual parameters
amount and rate.

� Even though rate
appears in both, they
are separate variables
(because of scope
rules).

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

def test():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

Python Programming, 2/e 54

Functions that Modify
Parameters

� The assignment of
the parameters
causes the variables
balance and rate
in addInterest to

refer to the values
of the actual
parameters!

def addInterest(balance, rate):

newBalance = balance*(1 + rate)

balance = newBalance

def test():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

Python Programming, 2/e 55

Functions that Modify
Parameters

Python Programming, 2/e 56

Functions that Modify
Parameters

� Executing the first
line of
addInterest

creates a new
variable,
newBalance.

� balance is then

assigned the value
of newBalance.

def addInterest(balance, rate):

newBalance = balance * (1 +

rate)

balance = newBalance

def test():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

Python Programming, 2/e 57

Functions that Modify
Parameters

� balance now refers

to the same value as
newBalance, but

this had no effect on
amount in the test
function.

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

def test():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print (amount)

Python Programming, 2/e 58

Functions that Modify
Parameters

Python Programming, 2/e 59

Functions that Modify
Parameters

� Execution of
addInterest has
completed and control
returns to test.

� The local variables,
including the
parameters, in
addInterest go
away, but amount and
rate in the test
function still refer to
their initial values!

def addInterest(balance, rate):

newBalance = balance * (1 +

rate)

balance = newBalance

def test():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

Python Programming, 2/e 60

Functions that Modify
Parameters

� To summarize: the formal parameters
of a function only receive the values of
the actual parameters. The function
does not have access to the variable
that holds the actual parameter.

� Python is said to pass all parameters by
value.

Python Programming, 2/e 61

Functions that Modify
Parameters

� Some programming languages (C++, Ada,
and many more) do allow variables
themselves to be sent as parameters to a
function. This mechanism is said to pass
parameters by reference.

� When a new value is assigned to the formal
parameter, the value of the variable in the
calling program actually changes.

Python Programming, 2/e 62

Functions that Modify
Parameters

� Since Python doesn’t have this

capability, one alternative would be to
change the addInterest function so
that it returns the newBalance.

Python Programming, 2/e 63

Functions that Modify
Parameters

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

return newBalance

def test():

amount = 1000

rate = 0.05

amount = addInterest(amount, rate)

print(amount)

test()

Python Programming, 2/e 64

Functions that Modify
Parameters

� Instead of looking at a single account, say we
are writing a program for a bank that deals
with many accounts. We could store the
account balances in a list, then add the
accrued interest to each of the balances in
the list.

� We could update the first balance in the list
with code like:
balances[0] = balances[0] * (1 + rate)

Python Programming, 2/e 65

Functions that Modify
Parameters

� This code says, “multiply the value in

the 0th position of the list by (1 + rate)
and store the result back into the 0th

position of the list.”

� A more general way to do this would be
with a loop that goes through positions
0, 1, …, length – 1.

Python Programming, 2/e 66

Functions that Modify
Parameters
addinterest3.py

Illustrates modification of a mutable parameter (a list).

def addInterest(balances, rate):

for i in range(len(balances)):

balances[i] = balances[i] * (1+rate)

def test():

amounts = [1000, 2200, 800, 360]

rate = 0.05

addInterest(amounts, 0.05)

print(amounts)

test()

Python Programming, 2/e 67

Functions that Modify
Parameters

� Remember, our original code had these
values:
[1000, 2200, 800, 360]

� The program returns:
[1050.0, 2310.0, 840.0, 378.0]

� What happened? Python passes
parameters by value, but it looks like
amounts has been changed!

Python Programming, 2/e 68

Functions that Modify
Parameters

� The first two lines of
test create the
variables amounts
and rate.

� The value of the
variable amounts is

a list object that
contains four int
values.

def addInterest(balances, rate):

for i in range(len(balances)):

balances[i] = balances[i] *

(1+rate)

def test():

amounts = [1000, 2200, 800, 360]

rate = 0.05

addInterest(amounts, 0.05)

print(amounts)

Python Programming, 2/e 69

Functions that Modify
Parameters

Python Programming, 2/e 70

Functions that Modify
Parameters

� Next, addInterest

executes. The loop
goes through each
index in the range 0,
1, …, length –1 and
updates that value
in balances.

def addInterest(balances, rate):

for i in range(len(balances)):

balances[i] = balances[i] *

(1+rate)

def test():

amounts = [1000, 2200, 800, 360]

rate = 0.05

addInterest(amounts, 0.05)

print(amounts)

Python Programming, 2/e 71

Functions that Modify
Parameters

Python Programming, 2/e 72

Functions that Modify
Parameters

� In the diagram the old
values are left hanging
around to emphasize
that the numbers in the
boxes have not
changed, but the new
values were created
and assigned into the
list.

� The old values will be
destroyed during
garbage collection.

def addInterest(balances, rate):

for i in range(len(balances)):

balances[i] = balances[i]

* (1+rate)

def test():

amounts = [1000, 2200, 800,

360]

rate = 0.05

addInterest(amounts, 0.05)

print amounts

Python Programming, 2/e 73

Functions that Modify
Parameters

� When addInterest terminates, the
list stored in amounts now contains the

new values.

� The variable amounts wasn’t changed

(it’s still a list), but the state of that list
has changed, and this change is visible
to the calling program.

Python Programming, 2/e 74

Functions that Modify
Parameters

� Parameters are always passed by value.
However, if the value of the variable is
a mutable object (like a list of graphics
object), then changes to the state of
the object will be visible to the calling
program.

� This situation is another example of the
aliasing issue discussed in Chapter 4!

Python Programming, 2/e 75

Functions and Program
Structure

� So far, functions have been used as a
mechanism for reducing code duplication.

� Another reason to use functions is to make
your programs more modular.

� As the algorithms you design get increasingly
complex, it gets more and more difficult to
make sense out of the programs.

Python Programming, 2/e 76

Functions and Program
Structure

� One way to deal with this complexity is
to break an algorithm down into smaller
subprograms, each of which makes
sense on its own.

� This topic will be discussed in more
detail in Chapter 9.

Python Programming, 2/e 77

Functions and Program
Structure
def main():

Introduction

print("This program plots the growth of a

10 year investment.")

Get principal and interest rate

principal = eval(input("Enter the initial

principal: "))

apr = eval(input("Enter the annualized

interest rate: "))

Create a graphics window with labels on

left edge

win = GraphWin("Investment Growth Chart",

320, 240)

win.setBackground("white")

win.setCoords(-1.75,-200, 11.5, 10400)

Text(Point(-1, 0), ' 0.0K').draw(win)

Text(Point(-1, 2500), ' 2.5K').draw(win)

Text(Point(-1, 5000), ' 5.0K').draw(win)

Text(Point(-1, 7500), ' 7.5k').draw(win)

Text(Point(-1, 10000), '10.0K').draw(win)

Draw bar for initial principal

drawBar(win, 0, principal)

Draw a bar for each subsequent year

for year in range(1, 11):

principal = principal * (1 + apr)

drawBar(win, year, principal)

input("Press <Enter> to quit.")

win.close()

Python Programming, 2/e 78

Functions and Program
Structure

� We can make this program more
readable by moving the middle eight
lines that create the window where the
chart will be drawn into a value
returning function.

Python Programming, 2/e 79

Functions and Program
Structure
def createLabeledWindow():

window = GraphWin("Investment Growth

Chart", 320, 240)

window.setBackground("white")

window.setCoords(-1.75,-200, 11.5, 10400)

Text(Point(-1, 0), ' 0.0K').draw(window)

Text(Point(-1, 2500), ' 2.5K').draw(window)

Text(Point(-1, 5000), ' 5.0K').draw(window)

Text(Point(-1, 7500), ' 7.5k').draw(window)

Text(Point(-1, 10000),

'10.0K').draw(window)

return window

def main():

print("This program plots the growth of a

10 year investment.")

principal = eval(input("Enter the initial

principal: "))

apr = eval(input("Enter the annualized

interest rate: "))

win = createLabeledWindow()

drawBar(win, 0, principal)

for year in range(1, 11):

principal = principal * (1 + apr)

drawBar(win, year, principal)

input("Press <Enter> to quit.")

win.close()

