
Python Programming, 2/e 1

Python Programming:
An Introduction to
Computer Science

Chapter 4

Objects and Graphics

Python Programming, 2/e 2

Objectives

� To understand the concept of objects
and how they can be used to simplify
programs.

� To be familiar with the various objects
available in the graphics library.

� To be able to create objects in
programs and call appropriate methods
to perform graphical computations.

Python Programming, 2/e 3

Objectives (cont.)

� To understand the fundamental
concepts of computer graphics,
especially the role of coordinate
systems and coordinate
transformations.

� To understand how to work with both
mouse and text-based input in a
graphical programming context.

Python Programming, 2/e 4

Objectives (cont.)

� To be able to write simple interactive
graphics programs using the graphics
library.

Python Programming, 2/e 5

Overview

� Each data type can represent a certain
set of values, and each had a set of
associated operations.

� The traditional programming view is
that data is passive – it’s manipulated

and combined with active operations.

Python Programming, 2/e 6

Overview

� Modern computer programs are built using an
object-oriented approach.

� Most applications you’re familiar with have

Graphical User Interfaces (GUI) that provide
windows, icons, buttons and menus.

� There’s a graphics library (graphics.py)
written specifically to go with this book. It’s

based on Tkinter.

Python Programming, 2/e 7

The Object of Objects

� Basic idea – view a complex system as
the interaction of simpler objects. An
object is a sort of active data type that
combines data and operations.

� Objects know stuff (contain data) and
they can do stuff (have operations).

� Objects interact by sending each other
messages.

Python Programming, 2/e 8

The Object of Objects

� Suppose we want to develop a data
processing system for a college or
university.

� We must keep records on students who
attend the school. Each student will be
represented as an object.

Python Programming, 2/e 9

The Object of Objects

� The student object would contain data like:

� Name

� ID number

� Courses taken

� Campus Address

� Home Address

� GPA

� Etc.

Python Programming, 2/e 10

The Object of Objects

� The student object should also respond to
requests.

� We may want to send out a campus-wide
mailing, so we’d need a campus address for

each student.

� We could send the printCampusAddress

to each student object. When the student
object receives the message, it prints its own
address.

Python Programming, 2/e 11

Object of Objects

� Objects may refer to other objects.

� Each course might be represented by
an object:

� Instructor

� Student roster

� Prerequisite courses

� When and where the class meets

Python Programming, 2/e 12

Object of Objects

� Sample Operation
� addStudent

� delStudent

� changeRoom

� Etc.

Python Programming, 2/e 13

Simple Graphics Programming

� This chapter uses the graphics.py

library supplied with the supplemental
materials.

� Two location choices

� In Python’s Lib directory with other

libraries

� In the same folder as your graphics
program

Python Programming, 2/e 14

Simple Graphics Programming

� Since this is a library, we need to import
the graphics commands
>>> import graphics

� A graphics window is a place on the
screen where the graphics will appear.
>>> win = graphics.GraphWin()

� This command creates a new window titled
“Graphics Window.”

Python Programming, 2/e 15

Simple Graphics Programming

� GraphWin is an object assigned to the
variable win. We can manipulate the
window object through this variable,
similar to manipulating files through file
variables.

� Windows can be closed/destroyed by
issuing the command
>>> win.close()

Python Programming, 2/e 16

Simple Graphics Programming

� It’s tedious to use the graphics.

notation to access the graphics library
routines.

� from graphics import *

The “from” statement allows you to
load specific functions from a library
module. “*” will load all the functions,
or you can list specific ones.

Python Programming, 2/e 17

Simple Graphics Programming

� Doing the import this way eliminates
the need to preface graphics commands
with graphics.
>>> from graphics import *

>>> win = GraphWin()

Python Programming, 2/e 18

Simple Graphics Programming

� A graphics window is a collection of points
called pixels (picture elements).

� The default GraphWin is 200 pixels tall by 200
pixels wide (40,000 pixels total).

� One way to get pictures into the window is
one pixel at a time, which would be tedious.
The graphics routine has a number of
predefined routines to draw geometric
shapes.

Python Programming, 2/e 19

Simple Graphics Programming

� The simplest object is the Point. Like points
in geometry, point locations are represented
with a coordinate system (x, y), where x is
the horizontal location of the point and y is
the vertical location.

� The origin (0,0) in a graphics window is the
upper left corner.

� X values increase from left to right, y values
from top to bottom.

� Lower right corner is (199, 199)

Python Programming, 2/e 20

Simple Graphics Programming

>>> p = Point(50, 60)

>>> p.getX()

50

>>> p.getY()

60

>>> win = GraphWin()

>>> p.draw(win)

>>> p2 = Point(140,

100)

>>> p2.draw(win)

Python Programming, 2/e 21

Simple Graphics Programming
>>> ### Open a graphics window

>>> win = GraphWin('Shapes')

>>> ### Draw a red circle centered at point

(100, 100) with radius 30

>>> center = Point(100, 100)

>>> circ = Circle(center, 30)

>>> circ.setFill('red')

>>> circ.draw(win)

>>> ### Put a textual label in the center of

the circle

>>> label = Text(center, "Red Circle")

>>> label.draw(win)

>>> ### Draw a square using a Rectangle object

>>> rect = Rectangle(Point(30, 30), Point(70,

70))

>>> rect.draw(win)

>>> ### Draw a line segment using a Line object

>>> line = Line(Point(20, 30), Point(180, 165))

>>> line.draw(win)

>>> ### Draw an oval using the Oval object

>>> oval = Oval(Point(20, 150), Point(180,

199))

>>> oval.draw(win)

Python Programming, 2/e 22

Using Graphical Objects

� Computation is preformed by asking an
object to carry out one of its operations.

� In the previous example we
manipulated GraphWin, Point, Circle,
Oval, Line, Text and Rectangle. These
are examples of classes.

Python Programming, 2/e 23

Using Graphical Objects

� Each object is an instance of some
class, and the class describes the
properties of the instance.

� If we say that Augie is a dog, we are
actually saying that Augie is a specific
individual in the larger class of all dogs.
Augie is an instance of the dog class.

Python Programming, 2/e 24

Using Graphical Objects

� To create a new instance of a class, we use a
special operation called a constructor.
<class-name>(<param1>, <param2>, …)

� <class-name> is the name of the class we want
to create a new instance of, e.g. Circle or
Point.

� The parameters are required to initialize the
object. For example, Point requires two
numeric values.

Python Programming, 2/e 25

Using Graphical Objects

� p = Point(50, 60)

The constructor for the Point class
requires to parameters, the x and y
coordinates for the point.

� These values are stored as instance
variables inside of the object.

Python Programming, 2/e 26

Using Graphical Objects

� Only the most relevant instance
variables are shown (others include the
color, window they belong to, etc.)

Python Programming, 2/e 27

Using Graphical Objects

� To perform an operation on an object, we
send the object a message. The set of
messages an object responds to are called
the methods of the object.

� Methods are like functions that live inside the
object.

� Methods are invoked using dot-notation:
<object>.<method-name>(<param1>, <param2>, …)

Python Programming, 2/e 28

Using Graphical Objects

� p.getX() and p.getY() returns the x
and y values of the point. Routines like
these are referred to as accessors
because they allow us to access
information from the instance variables
of the object.

Python Programming, 2/e 29

Using Graphical Objects

� Other methods change the state of the object
by changing the values of the object’s
instance variables.

� move(dx, dy) moves the object dx units in

the x direction and dy in the y direction.

� Move erases the old image and draws it in its
new position. Methods that change the state
of an object are called mutators.

Python Programming, 2/e 30

Using Graphical Objects
>>> circ = Circle(Point(100, 100), 30)
>>> win = GraphWin()

>>> circ.draw(win)

� The first line creates a circle with radius 30
centered at (100,100).

� We used the Point constructor to create a
location for the center of the circle.

� The last line is a request to the Circle object
circ to draw itself into the GraphWin object
win.

Python Programming, 2/e 31

Using Graphical Objects

� The draw method
uses information
about the center
and radius of the
circle from the
instance variable.

Python Programming, 2/e 32

Using Graphical Objects

� It’s possible for two different variables to
refer to the same object – changes made to
the object through one variable will be visible
to the other.
>>> leftEye = Circle(Point(80,50), 5)

>>> leftEye.setFill('yellow')

>>> leftEye.setOutline('red')

>>> rightEye = leftEye

>>> rightEye.move(20,0)

� The idea is to create the left eye and copy
that to the right eye which gets moved 20
units.

Python Programming, 2/e 33

Using Graphical Objects

� The assignment rightEye = leftEye

makes rightEye and leftEye refer to the
same circle!

� The situation where two variables refer
to the same object is called aliasing.

Python Programming, 2/e 34

Using Graphical Objects

Python Programming, 2/e 35

Using Graphical Objects

� There are two ways to get around this.

� We could make two separate circles,
one for each eye:
>>> leftEye = Circle(Point(80, 50), 5)

>>> leftEye.setFill('yellow')

>>> leftEye.setOutline('red')

>>> rightEye = Circle(Point(100, 50), 5)

>>> rightEye.setFill('yellow')

>>> rightEye.setOutline('red')

Python Programming, 2/e 36

Using Graphical Objects

� The graphics library has a better
solution. Graphical objects have a clone
method that will make a copy of the
object!
>>> # Correct way to create two circles, using

clone

>>> leftEye = Circle(Point(80, 50), 5)

>>> leftEye.setFill('yellow')

>>> leftEye.setOutline('red')

>>> rightEye = leftEye.clone() # rightEye is an

exact copy of the left

>>> rightEye.move(20, 0)

Python Programming, 2/e 37

Graphing Future Value/
Choosing Coordinates

Python Programming, 2/e 38

Graphing Future Value/
Choosing Coordinates

Python Programming, 2/e 39

Interactive Graphics

� In a GUI environment, users typically
interact with their applications by
clicking on buttons, choosing items
from menus, and typing information
into on-screen text boxes.

� Event-driven programming draws
interface elements (widgets) on the
screen and then waits for the user to do
something.

Python Programming, 2/e 40

Interactive Graphics

� An event is generated whenever a user
moves the mouse, clicks the mouse, or
types a key on the keyboard.

� An event is an object that encapsulates
information about what just happened!

� The event object is sent to the
appropriate part of the program to be
processed, for example, a button event.

Python Programming, 2/e 41

Interactive Graphics

� The graphics module hides the
underlying, low-level window
management and provides two simple
ways to get user input in a GraphWin.

Python Programming, 2/e 42

Getting Mouse Clicks

� We can get graphical information from the
user via the getMouse method of the
GraphWin class.

� When getMouse is invoked on a GraphWin,

the program pauses and waits for the user to
click the mouse somewhere in the window.

� The spot where the user clicked is returned
as a Point.

Python Programming, 2/e 43

Getting Mouse Clicks

� The following code reports the
coordinates of a mouse click:

from graphics import *

win = GraphWin("Click Me!")

p = win.getMouse()

print("You clicked", p.getX(), p.getY())

� We can use the accessors like getX and
getY or other methods on the point

returned.

Python Programming, 2/e 44

Getting Mouse Clicks
triangle.pyw

Interactive graphics program to draw a triangle

from graphics import *

def main():

win = GraphWin("Draw a Triangle")

win.setCoords(0.0, 0.0, 10.0, 10.0)

message = Text(Point(5, 0.5), "Click on three points")

message.draw(win)

Get and draw three vertices of triangle

p1 = win.getMouse()

p1.draw(win)

p2 = win.getMouse()

p2.draw(win)

p3 = win.getMouse()

p3.draw(win)

Python Programming, 2/e 45

Getting Mouse Clicks
Use Polygon object to draw the triangle

triangle = Polygon(p1,p2,p3)

triangle.setFill("peachpuff")

triangle.setOutline("cyan")

triangle.draw(win)

Wait for another click to exit

message.setText("Click anywhere to quit.")

win.getMouse()

main()

Python Programming, 2/e 46

Getting Mouse Clicks

Python Programming, 2/e 47

Getting Mouse Clicks

� Notes:

� If you are programming in a windows
environment, using the .pyw extension on your file
will cause the Python shell window to not display
when you double-click the program icon.

� There is no triangle class. Rather, we use the
general polygon class, which takes any number of
points and connects them into a closed shape.

Python Programming, 2/e 48

Getting Mouse Clicks

� Once you have three points, creating a triangle
polygon is easy:
triangle = Polygon(p1, p2, p3)

� A single text object is created and drawn near the
beginning of the program.
message = Text(Point(5,0.5), "Click on three points")

message.draw(win)

� To change the prompt, just change the text to be
displayed.
message.setText("Click anywhere to quit.")

Python Programming, 2/e 49

Handling Textual Input

� The triangle program’s input was done
completely through mouse clicks. There’s
also an Entry object that can get keyboard

input.

� The Entry object draws a box on the screen

that can contain text. It understands
setText and getText, with one difference

that the input can be edited.

Python Programming, 2/e 50

Handling Textual Input

Python Programming, 2/e 51

Handling Textual Input
convert_gui.pyw

Program to convert Celsius to Fahrenheit using a simple

graphical interface.

from graphics import *

def main():

win = GraphWin("Celsius Converter", 300, 200)

win.setCoords(0.0, 0.0, 3.0, 4.0)

Draw the interface

Text(Point(1,3), " Celsius Temperature:").draw(win)

Text(Point(1,1), "Fahrenheit Temperature:").draw(win)

input = Entry(Point(2,3), 5)

input.setText("0.0")

input.draw(win)

output = Text(Point(2,1),"")

output.draw(win)

button = Text(Point(1.5,2.0),"Convert It")

button.draw(win)

Rectangle(Point(1,1.5), Point(2,2.5)).draw(win)

Python Programming, 2/e 52

Handling Textual Input
wait for a mouse click

win.getMouse()

convert input

celsius = eval(input.getText())

fahrenheit = 9.0/5.0 * celsius + 32

display output and change button

output.setText(fahrenheit)

button.setText("Quit")

wait for click and then quit

win.getMouse()

win.close()

main()

Python Programming, 2/e 53

Handling Textual Input

Python Programming, 2/e 54

Handling Textual Input

� When run, this program produces a
window with an entry box for typing in
the Celsius temperature and a button to
“do” the conversion.

� The button is for show only! We are just
waiting for a mouse click anywhere in the
window.

Python Programming, 2/e 55

Handling Textual Input

� Initially, the input entry box is set to
contain “0.0”.

� The user can delete this value and type
in another value.

� The program pauses until the user
clicks the mouse – we don’t care where
so we don’t store the point!

Python Programming, 2/e 56

Handling Textual Input

� The input is processed in three steps:

� The value entered is converted into a
number with eval.

� This number is converted to degrees
Fahrenheit.

� This number is then converted to a string
and formatted for display in the output

text area.

