Announcements

• Project 5 is due Dec. 6.

• Second part is essay questions for CoS teaming requirements.
 • The first part you do as a team
 • The CoS essay gets individually answered and has separate submission instructions on the home page

• Final on Dec 11 in EE 129, 10:30 – 12:30
 • Also posted on course home
Recursion

- Divide & Conquer
 - Merge sort
 - Binary search

- Permutations generated recursively
 - Using strings (Anagrams)
 - Using lists (making type distinctions)

- Tail recursion
 - Unrolling recursive string reversal
 - Unrolling recursive binary search

- Recursive tree traversals
 - Special case priority queue (heap)
 - Special case expression tree
 - General tree traversal
Key Insight

- To understand and be able to program recursively, you must
 - Break down the problem into sub problems and
 - Join the solution of those sub problems back to get the solution of the original problem.

- Merge sort is a good example
Visual Representation (see week 13)

- n elements merged
- \(\log(n) \)
Recall Binary Search

- The basic idea of the binary search algorithm was to iteratively divide the problem in half.

- This technique is known as the *divide and conquer* approach in algorithm design.

- Divide and conquer divides the original problem into sub-problems that are smaller versions of the original problem.
Recursive Algorithm for Binary Search

def binarySearch(key, low, high, numlist):
 mid = (low + high)//2
 if low > high:
 return -1
 if key == numlist[mid]:
 return mid
 elif key < numlist[mid]:
 return binarySearch(key, low, mid-1, numlist)
 else:
 return binarySearch(key, mid+1, high, numlist)
Recursive Definitions Rules

1. All good recursive definitions have these two key characteristics:
 - There are one or more base cases for which no recursion is applied:
 - Empty search interval for binary search
 - Length 1 lists for merge sort
 - All chains of recursion eventually end up at one of the base cases.
 - After probing the mid entry of the search segment, recursion reduces the search interval by half, an ideal case
 - Merge sort splits the list into two halves, each smaller than the input

2. The simplest way for these two conditions to occur is for each recursion to act on a smaller version of the original problem. A very small version of the original problem that can be solved without recursion becomes the base case.
 - See (1)
Example of Call Sequence

Search 7 in L=[1,3,4,5,6,8,9]:

- (7,0,6,L):
 - call
 - 0 <= 6 bnds chk
 - (0+6)//2 => 3 mid
 - 7 != 5 key comp
- (7,4,6,L):
 - recursion
 - 4 <= 6 bnds chk
 - (4+6)//2 => 5 mid
 - 7 != 8 key comp
 - (7,4,4,L): ...
 - 4 <= 4

Continued...

- (4+4)//2 => 4
- 7 != 6
- (7,5,4,L):
 - 5 > 4
 - return -1
 - return -1
 - return -1
 - function has returned
Example: Permutations

- All possible orderings of numbers 1 through n encode the permutations of n objects.

- Let’s generate all permutations recursively.
 - Caution: there are $n!$ permutations of n objects

1,2,3,4 2,1,3,4 2,3,1,4 2,3,4,1
1,3,2,4 3,1,2,4 3,2,1,4 3,2,4,1
1,3,4,2 3,1,4,2 3,4,1,2 3,4,2,1
1,2,4,3 2,1,4,3 2,4,1,3 2,4,3,1
1,4,2,3 4,1,2,3 4,2,1,3 4,2,3,1
1,4,3,2 4,1,3,2 4,3,1,2 4,3,2,1
Example: Permutations

- All possible orderings of numbers 1 through \(n \) encode the *permutations* of \(n \) objects.

- Let’s generate all permutations recursively.
 - Caution: there are \(n! \) permutations of \(n \) objects

\[
\begin{array}{llll}
1,2,3,4 & 2,1,3,4 & 2,3,1,4 & 2,3,4,1 \\
1,3,2,4 & 3,1,2,4 & 3,2,1,4 & 3,2,4,1 \\
1,3,4,2 & 3,1,4,2 & 3,4,1,2 & 3,4,2,1 \\
1,2,4,3 & 2,1,4,3 & 2,4,1,3 & 2,4,3,1 \\
1,4,2,3 & 4,1,2,3 & 4,2,1,3 & 4,2,3,1 \\
1,4,3,2 & 4,1,3,2 & 4,3,1,2 & 4,3,2,1
\end{array}
\]
There are X permutations of 4 objects, where X is:

A. About 12
B. 24
C. 36
D. 60
Example: Permutations

Let’s apply this approach

- Slice the first character off the string.
- Place the first character in all possible locations within the permutations formed from the “rest” of the original string.
Permuting Characters

- Suppose the original string is “123”. Stripping off the “1” leaves us with “23”.

- Generating all permutations of “23” gives us “23” and “32”.

- To form the permutations of the original string, we place “1” in all possible locations within these two permutations: [“123”, “213”, “231”, “132”, “312”, “321”]
Example: Permutations

- As in the previous example, we can use the empty string as our base case.

```
def permute(s):
    if s == "":
        return [s]
    else:
        ans = []
        for w in permute(s[1:]):
            for pos in range(len(w)+1):
                ans.append(w[:pos]+s[0]+w[pos:])
        return ans
```
Example: Permutations

- A list is used to accumulate results.
- The outer `for` loop iterates through each permutation of the tail of `s`.
- The inner loop goes through each position in the permutation and creates a new string with the original first character inserted into that position.
- The inner loop goes up to `len(w)+1` so the new character can be added also at the end of the tail permutation.
Example: Permutations

- \(w[:\text{pos}]+s[0]+w[\text{pos}:] \)
 - \(w[:\text{pos}] \) gives the part of \(w \) up to, but not including, \(\text{pos} \).
 - \(w[\text{pos}:] \) gives everything from \(\text{pos} \) to the end.
 - Inserting \(s[0] \) between them effectively inserts it into \(w \) at \(\text{pos} \).
def permute(s):
 if s == []: # was ""
 return s # was [s]
 else:
 ans = []
 for w in permute(s[1:]):
 for pos in range(len(w)+1):
 ans.append(w[:pos]+s[0]+w[pos:])
 return ans
Demo Code
Recursive String Reversal

- Using recursion, we can calculate the reverse of a string without the intermediate list step.

- Think of a string as a recursive object:
 - Divide it up into a first character and “all the rest”
 - Reverse the “rest” and append the first character to the end of it

- Elegant, but don’t forget the base case!
String Reversal?

- `def reverse(s):
 return reverse(s[1:]) + s[0]
`

- The slice `s[1:]` returns all but the first character of the string.

- We reverse this slice and then concatenate the first character (`s[0]`) onto the end.
String Reversal?

- >>> reverse("Hello")

 Traceback (most recent call last):
 File "<pyshell#6>", line 1, in -toplevel-
 reverse("Hello")
 File "C:/Program Files/Python 2.3.3/z.py", line 8, in reverse
 return reverse(s[1:]) + s[0]
 File "C:/Program Files/Python 2.3.3/z.py", line 8, in reverse
 return reverse(s[1:]) + s[0]
 ...
 File "C:/Program Files/Python 2.3.3/z.py", line 8, in reverse
 return reverse(s[1:]) + s[0]
 RuntimeError: maximum recursion depth exceeded

- What happened? There were 1000 lines of errors!
Example: String Reversal

- Remember: To build a correct recursive function, we need a base case that doesn’t use recursion.

- We forgot to include a base case, so our program is an infinite recursion. Each call to `reverse` contains another call to `reverse`, so none of them return.
Example: String Reversal

- def reverse(s):

  ```python
  if s == "":
      return s
  else:
      return reverse(s[1:]) + s[0]
  ```

- >>> reverse("Hello")
 'olleH'
Announcements

- Posted slides updated
- Project 5 is due Dec. 6.
- Second part is essay questions for CoS teaming requirements.
 - The first part you do as a team
 - The CoS essay gets individually answered and has separate submission instructions on the home page
- Final on Dec 11 in EE 129, 10:30 – 12:30
 - Also posted on course home
Tail Recursion

- Characteristic code pattern:
  ```python
def f(X):
    #base case condition & computation>
    #some computation>  #f(X’) at the end
    return result
  ```

- Can be changed into a loop:
  ```python
def f(X):
    #base case computation>
    while not #base case condition>::
      #some computation>  #X’, inverted
    return result
  ```
Tail Recursion

- Characteristic code pattern:

```python
def revStringRec(L):
    if len(L) == 0:
        return L
    R = revStringRec(L[1:]) + L[0]
    return R
```

- Can be changed into a loop

```python
def revStringLoop(L):
    R = ''
    while len(L) != 0:
        R = L[0] + R
        L = L[1:]  
    return R
```
Example

rev('abc'):
'abc';
'ab'; rev('bc')
'bc'; 'a';
'b'; rev('c')
'c'; 'b';
'c'; rev('')
''; 'c';
''; ''
Inverse also true

- An algorithm with a main loop can also be recast recursively, using tail recursion
- Unroll the loop and look for the pattern
Tail Recursion

Loop can be changed into a recursion:

```python
def revStringLoop(L):
    R = ''
    while len(L) != 0:
        R = L[0] + R
        L = L[1:]
    return R
```

Outcome:

```python
def revStringRec(L):
    if len(L) == 0:
        return L
    R = revStringRec(L[1:]) + L[0]
    return R
```
Another Conversion Example

def binarySearch(key, low, high, numlist):
 mid = (low + high)//2
 if low > high:
 return -1
 if key == numlist[mid]:
 return mid
 elif key < numlist[mid]:
 return binarySearch(key, low, mid-1, numlist)
 else:
 return binarySearch(key, mid+1, high, numlist)
def binarySearch(key, low, high, numlist):
 mid = (low + high)//2
 while low <= high:
 if key == numlist[mid]:
 return mid
 elif key < numlist[mid]:
 high = mid-1
 else:
 low = mid+1
 return -1
Heap Traversals

- We discussed heaps (priority queues) in week 13
- Data structure is conceptually a complete binary tree
- Encoded as a flat list, filling the tree layer by layer
- Index mappings for parent → child and child → parent
- Parent not smaller than children (max heap)

Access Mappings:
- Parent to left child: \(k \rightarrow 2k + 1 \)
- Parent to right child: \(k \rightarrow 2k + 2 \)
- Child to parent: \(k \rightarrow (k - 1)/2 \)
CQ: encoding of a valid heap?

[9,7,4,6,5,2,2,1,1,1,1]

A. Yes
B. No
CQ: encoding of a valid heap?

[9,7,4,6,5,2,2,1,1,1,1]

A. Yes
B. No
CQ: encoding of a valid heap?

[9, 7, 4, 6, 5, 5, 2, 2, 1, 1, 1]

A. Yes
B. No
CQ: encoding of a valid heap?

[9,7,4,6,5,5,2,2,1,1,1]

A. Yes

B. No
CQ: how many children for L[5]?

[9,7,4,6,5,4,2,2,1,1,1,1]

A. 0
B. 1
C. 2
CQ: how many children for L[5]?

\[9,7,4,6,5,4,2,2,1,1,1,1\]

A. 0
B. 1
C. 2
Special Traversal

root to leaf, always leftmost:

\[k = 0 \]
\[\text{while } k < \text{len}(L): \]
\[\quad \# \text{work on node } L[k] \]
\[\quad k = 2*k+1 \]

last leaf to root:

\[k = \text{len}(L)-1 \]
\[\text{while } k >= 0: \]
\[\quad \# \text{process node } L[k] \]
\[\quad k = (k-1)//2 \]
Expression Tree Traversals

- **Preorder:**
 - visit node, visit left subtree, visit right subtree

- **Inorder:**
 - visit left subtree, visit node, visit right subtree

- **Postorder:**
 - visit left subtree, visit right subtree, visit node
3*5+2*(6-1)

3, *, 5, *, 2, -, 6, 1

3, *, 5, +, 2, *, 6, -, 1

3, 5, *, 2, 6, 1, -, *, +
def preorder(E):
 print root label
 if E is not a leaf:
 preorder(left(E))
 preorder(right(E))

def postorder(E):
 if E is not a leaf:
 preorder(left(E))
 preorder(right(E))
 print root label

def inorder(E):
 if E is not a leaf:
 inorder(left(E))
 print root label
 if E is not a leaf:
 inorder(right(E))
 print root label
Tree Encoding

- \([r, b_1, \ldots, b_k]\) encodes the node \(r\) and its descendants
- Nesting builds up the tree
- It is a preorder encoding !!!

![Tree Diagram](image)
Summing all Node Values

- Assume given a list all of whose elements are numbers or sublists of numbers, nested arbitrarily
- This list encodes a tree all of whose nodes, including leaves, are labeled with a number
- We want to sum all numbers in the tree

```
[3, [1, 4, [2, 3, 1], 5], [9, [7, 2, 5]]]
```
def sumTree(L):
 if type(L) == int or type(L) == float:
 return L
 if type(L) != list:
 print("unknown tree node",L)
 return
 sum = 0
 for L1 in L:
 sum = sum + sumTree(L1)
 return sum
def sumTree(L):
 if type(L) == int or type(L) == float:
 return L
 if type(L) != list:
 print("unknown tree node",L)
 return
 sum = L[0]
 for L1 in L[1:]:
 sum = sum + sumTree(L1)
 return sum