
CS177 Python Programming

Recitation 7
Loops, Debugging

Agenda

• Revisit Loops.
• What are computer bugs?

• When are computer bugs discovered?

– Compile Time and Runtime

• What kind of bugs are discovered?

– Syntax, Arithmetic and Logic Errors

• Are there tools to help us find bugs?

– Print statements and Python debugger

For Loop

• Definite Loops are implemented with for loops
• For loops are traditionally used when you have a piece of

code which you want to repeat a fixed number of times.

• The general form of for loop:
For <var> in <sequence>:

<body>
• var is called the loop index, it takes consecutive values listed

in sequence.
• There are two forms of for loop

• for i in range(INTEGER)
• for item in (LIST/STRING)

For Loop
myList = range(3)
for i in myList:

print(i)

>>
0
1
2

for i in range(3):
print(i)

>>
0
1
2

str = ‘Hello’
for c in str:

print(c)

>>
H
e
l
l
o

str = ‘Hello’
For i in
range(len(Str)):

print(str(i))
>>
H
e
l
l
o

While Loop

• The general form of a while loop:
while <condition>:

<body>
• The condition is a Boolean expression.
• The while will keep looping executing the body

as long as the condition is True.

While Loop

• Infinite loop

i = 0
while True:

i = i + 1
print (i)

>>
1
2
3
.
.

• Not infinite loop

i = 0
while i<5:

i = i + 1
print (i)

>>
1
2
3
4
5

• To prevent an infinite loop, the condition of the
loop must depend on the body, so that after
looping couple of times the condition will be
evaluated to False and the loop would terminate.

Break & Continue

xlist = [2,4,-1,8]
for num in xlist:

if (num <0):
break

print (num)

>>
2
4

xlist = [2,4,-1,8]
for num in xlist:

if (num <0):
continue

print (num)

>>
2
4
8

• Break terminates the loop
• Continue terminates the current iteration

Nested Loops

• We can define a loop within another loop.

• Each single iteration for the outer loop, all the

iterations of the inner loop will be executed.

for i in range(4): #The outer loop
for j in range(2): #The inner loop

print (i,j)

>>

0 0

0 1

1 0

1 1

2 0

2 1

3 0

3 1

- The number of times the print
statement is executed = len(range(4))*len(range(2))

Nested Loops

Nested loops are suitable when working with nested lists.
E.g. Given a nested list, print the sum of each inner list.

def main():
myList = [[1,2,3],[10,-5,20],[40]]
for lst in myList:

sum = 0
for number in lst:

sum = sum + number
print (sum)

main()

>>
6
30
40

Nested Loops

Given a nested list, add all positive numbers per inner list and print the

sum.

def main():
myList = [[1,2,3],[10,-5,20],[40]]
for lst in myList:

sum = 0
for number in lst:

if(number < 0):
continue

sum = sum + number
print (sum)

main()
>>
6
30
40

def main():
myList = [[1,2,3],[10,-5,20],[40]]
for lst in myList:

sum = 0
for number in lst:

if(number < 0):
break

sum = sum + number
print (sum)

main()
>>
6
10
40

WRONGCORRECT

Debugging
Early computers used
vacuum tubes. The tubes
would get hot and
attracted moths. A moth
was zapped and interfered
with the circuitry. The bug
had to be removed to fix
the computer. Some say
this is how the word
“debugging” came into
use.

Debugging

• What is a computer bug?

– A computer bug is a problem that causes a
computer to produce an incorrect or unexpected
result.

Debugging

• Computer bugs can manifest themselves at
different phases of the program execution
including:

– Compile Time (Easy to catch)

– Runtime (Harder to catch)

When Are Bugs Discovered?

Compile Time, Load Time, & Runtime
Bugs

7

Compile Time Bug

• Compile time bugs show up when the source
code is converted into computer code

• A common compile time error is:

– Syntax Error

• A syntax error means that the source code
does not meet the source code specification.
For example:

– Missing a ‘:’ at the end of you def statement

Compile Time Bug Example

>>> def t2()

SyntaxError: invalid syntax

• Notice the missing ‘:’

• When you run this statement, Python
immediately knows that it is invalid code.

Load Time Bug

• Load time bugs, in the context of Python,
often have to do with the libraries that are
imported

– The permissions may not be set correctly on an
imported library file

– The library file may not be found

Load Time Bug Example

>>> import foo

ImportError: No module named foo

• In this case a library named foo does not exist

Runtime Bug

• Runtime bugs show up when the code is
executed

• A common runtime error is:

– NameError

• A name error means that a function or
variable was used that wasn’t defined

Runtime Bug Example

def t1():

print(a)

>>> t1()

• Notice that the variable 'a' is not defined

• When you save the file, Python does not
report an error, but when you call the
function an error pops up.

Runtime Bug Example

def t1():

print(a)

>>> t1()

NameError: global name 'a' is

not defined

• The NameError is produced when the t1
function is called

What are Some Common Bugs?

Syntax, Arithmetic, and Logic Errors

15

Syntax Bugs

• Syntax errors are often discovered by Python
at compile time but not always

• Likely you have encountered many of these:

– Incorrect indentation

– Missing elements (like ':')

Syntax Bug

Invalid syntax

• Incorrect indentation:

def t1():

t = 1

t should be

indented

Python catches

this syntax error

Syntax Bug

• Missing colon:

>>> def t1()

SyntaxError: invalid syntax

Missing ':'

Python will catch this

syntax error

Arithmetic Bugs

• We will only focus on one, but a few more
exist.

• One important arithmetic bug is a divide-by-
zero error

– By definition of division, you can't divide by zero

Arithmetic Bug

• Division by zero:

>>> 4/0

ZeroDivisionError: int division

or modulo by zero

you can't divide by 0

Python will catch this

arithmetic error

Logic Bugs

• Logic bugs are usually not caught
automatically by the computer like Syntax
Errors or Name Errors.

• The bug may be subtle and manifest itself in
peculiar ways.

• Usually takes human source code analysis to
track down the bug

Logic Bug

i = 0

while(i<5):

i = 1

• Infinite loop:

i is not getting

incremented

Python will not

catch this

Logic Bug

x = [21,22,23,24]

i = 0

while i <= len(x):

s = s + x[i]

i = i + 1

list index out ofIndexError:

range

• Off-by-one error

x[4] does not

exist

Python catches

this logic error

Find the bug ?!

a = 3

if(a=2):

print(a)

Sa=2
is a syntax error

should be:
a==2

>>Traceback (most recent call last):

File "python", line 2

if(a=2):

Find the bug ?!

This program should add the numbers in a list.

def add(a,b):

a=a+b

def main():

myList = [5,4,3]

sum = 0

for i in myList:

add(sum,myList[i])

print(sum)

main()

>>IndexError: list index out of

range

Should be add(sum,i)
since i takes values: 5,4,3

there is no myList[5]

Find the bug ?!

def add(a,b):

a=a+b

def main():

myList = [5,4,3]

sum = 0

for i in myList:

add(sum,i)

print(sum)

main()

>>0

sum and i are
immutables, so the value

of sum will not change
after calling add.

Find the bug ?!

This program should find the greatest value in a list:
def getMax(myList):

max = 0

for i in range(myList):

if(myList[i]>myList[i+1]):

return myList[i]

def main():

myList = [1,5,3,4,7,2]

print(getMax(myList))

main()

>>TypeError: 'list' object cannot be

interpreted as an integer

Should be:
len(myList)

Find the bug ?!

This program should find the greatest value in a list:
def getMax(myList):

max = 0

for i in range(len(myList)):

if(myList[i]>myList[i+1]):

return myList[i]

def main():

myList = [1,5,3,4,7,2]

print(getMax(myList))

main()

>>IndexError: list index out of

range

At i=5(last iteration)
myList[i+1] does not exist

Find the bug ?!

This program should find the greatest value in a list:
def getMax(myList):

max=0

for i in range(len(myList)):

if(myList[i]>max):

max = myList[i]

return max

def main():

myList = [1,5,3,4,7,2]

print(getMax(myList))

main()

>>7

NO BUG, for positive numbers !

Are there tools to help us find
bugs?

Print Statements and Python
Debugger

25

Print Statements

• Strategically places print() statements can be
placed in the source code to verify values

• Advantage: Using print statements (or
equivalents) to debug works in every
language, no language specific tool must be
learned

• Disadvantage: Not everything is printable

Using Print Statements

>>> sort3(8, 11, 3)

Input: x=

Output: [3,

8 y= 11 z= 3

8, 11]

• Verfiy input and output

def sort3(x, y, z):

print("Input: x=",x,"y=",y,"z=",z)

r = sorted([x,y,z])

print("Output:", r)

Using Print Statements

s, "+", i)

s = 0

for i in range(3):

ns = s + i

print(ns, "=",

s = ns

>>> t()

0 = 0 + 0

1 = 0 + 1

3 = 1 + 2

• Print intermediate live values
def t():

Python Debugger

• Many programming languages have debuggers
available

• A debugger lets you analyze the program state
after each statement

– Called stepping

Python Debugger

• To launch the Python debugger from IDLE:

– From the IDLE command window choose the
menu: Debug->Debugger

– Your command window will show [DEBUG ON]

– Then run commands as normal and you should
see the debugger window...

Python Debugger

• Options

– Stack: Current running function

– Source: Show me in the source what statement is
currently running

Locals: What are the values of the local variables

– Global: What are the values of global variables

Python Debugger

Debugging this code

def add(a,b):
s = a+b
return s

def main():
str = '1,2,3,4,5'
parts = str.split(',')
sum = 0
for p in parts:

x = eval(p)
sum = add(sum,x)

print (sum)

main()

IDLE Debugger
The next line to

be executed

IDLE Debugger
The next line to

be executed

Current values of
local variables before
the execution of the

gray line.

IDLE Debugger

Finish the
execution of the

program

IDLE Debugger

Step into. If the next line is a function call, step into will go to this
function and walk through its execution line by line

IDLE Debugger
Stepped into the function, to execute it line by line.

IDLE Debugger

Step out of the current function. Step out will continue the execution of the function and
returns to its calling site.

IDLE Debugger

After stepping out, the flow returned to the main, to continue execution what comes after
the function call.

IDLE Debugger

Step over the next line (execute it without going into its details). If the next line is a
function call, step over will execute the function without walking through its lines of

code.

IDLE Debugger

Step over executed the function without walking through its lines, and continue the
execution of the program.

ANY QUESTIONS?

33

