Algorithms Design
& Recursion

CS177 — Recitation 14

Agenda

* What's an Algorithm.

e Search algorithms
* Linear search
* Binary search

e Recursion.

e Optional arguments in functions

What’s an Algorithm

* An algorithm is a step-by-step list of instructions to solve a problem.

* An algorithm is like a recipe.

Best Brownies
Directions

1. Preheat oven to 350 degrees F (175 degrees C). Grease and flour an 8-inch square pan.
2. Inalargesaucepan, melt 1/2 cup butter. Remove from heat, and stir in sugar, eggs, and 1 teaspoon vanilla. Beatin 1/3 cup

cocoa, 1/2 cup flour, salt, and baking powder. Spread batterinto prepared pan.

Bakein preheated oven for 25 to 30 minutes. Do not overcook.

4. To Make Frosting: Combine 3 tablespoons softened butter, 3 tablespoons cocoa, honey, 1 teaspoon vanilla extract,and 1 cup
confectioners' sugar. Stir until smooth. Frost brownies while they are still warm.

2

THE WINDSOR KNOT wide and triangutar— lor wide-spread shirt collars.

IN MIRROR /2 IN MIRROR. : 3
) X M AN N
o e D D A
N8 1 L 2) 2 N i’l 3 L -[i 4 N .2_ 5
= Start with wide ~A Cross wideend f|i — Bring wide ent ({7 Then put Turn and pass Complete by
end of tie on OVer narrow down, around down through up through slipping down

% through the
knot in front.
Tighten and
draw up snug
to collar.

loop and around loopand...
ACross Narrow
as shown.

and bring up behind narrow
through eop. snd up on
your right.

your right and
extending 8
foot below

narrow end.

Search

* How would you find a numberin a list of numbers?

—

Find 5

Search

* How would you find a numberin a list of numbers?

—

Find 5

Search

* How would you find a numberin a list of numbers?

—

Find 5

Search

* How would you find a numberin a list of numbers?

—)
$

Return 2

Search

 What we did is called “Sequential search” or “Linear search”.
* Keep going through the elements one by one till you find your match.

* How can we write this in Python?

Sequential Search

def seqgSsearch(nums, n):
for i in range(len(nums)):
if nums|[i] n:
return 1
return -1

s this the best way todo it |?

Search

* What happensif you are searching among very big number of

elements ?
Go gle Algorithms

* Thereare also many algorithms solving the same problem.
* We want a good algorithm. But what defines “goodness”?

Evaluation of an Algorithm

* We evaluate an algorithm using two criteria's:

» Space complexity: How much memory the algorithm needs? In other words,
how many variables the algorithm needs?

* Time complexity: The number of steps executed by the algorithms?

* Why not just measure the time the algorithm takes !?
e Different machines, architectures = different execution times !

* We need to express the space/time complexity in terms of the data
size. For example: the size of the list we search in.

Space Complexity for Sequential Search

def segSsearch(nums, n):
for i in range(len(nums)):
if nums[1i] == n:
return 1
return -1

Uses only one variable: i

If len(nums) equals 5, this algorithm
will use only one variable (i).

If len(nums) equals 5000, this
algorithm will STILL use only one
variable (i).

This means the number of variables
this algorithm uses is constant with
respect the number of elements we
process.

The space complexity of this
algorithm is constant.

Time Complexity for Sequential Search

def segSsearch(nums, n):
for i in range(len(nums)):
if nums[1i] == n:
return 1
return -1

Checking if two numbers are

equal or not is the core
operation of this algorithm.

If len(nums) equals 5, this algorithm
will check the if condition 5 times.
If len(nums) equals 5000, this
algorithm will the if condition 5000
times.

This means the number of times
the if condition is evaluated
depends on the number of
elements we process.

The space complexity of this
algorithm is linear with the size of
the data.

Binary Search

What if the list of numbers is sorted, how can we use thatto
enhance the algorithm?

e

Binary search

def bsearch(x, nums):
low = ©
high = len(nums) - 1
while low <= high:
mid = (low+high)//2
item = nums|[mid]
if x = item:
return mid
elif x < item:
high = mid - 1
else:
low = mid + 1 ‘

Find 5

return -1

Binary search

def bsearch(x, nums):
low = ©
high = len(nums) - 1
while low <= high:
mid = (low+high)//2
item = nums|[mid]
if x = item:
return mid
elif x < item:

high = mid - 1
else:

low = mid + 1)
return -1 Find 5

low=0 high=7
1 5 7 8
0 4 6 7

Binary search

def bsearch(x, nums):
low = ©
high = len(nums) - 1
while low <= high:
- mid = (low+high)//2
item = nums|[mid]
if x = item:
return mid
elif x < item:
high = mid - 1
else:
low = mid + 1
return -1

Find 5

low=0 mid=3 high=7
1 i} 7 8
0 3 6 7

Binary search

def bsearch(x, nums):
low = ©
high = len(nums) - 1
while low <= high:
mid = (low+high)//2
item = nums|[mid]
if x = item:
return mid
elif x < item:
high = mid - 1
else:
low = mid + 1
return -1

Find 5

low=0 mid=3 high=7
1 3 4 5 6 7 8
0 2 3 4 5 6 7

item = nums/mid| = 4

Binary search

def bsearch(x, nums):
low = ©
high = len(nums) - 1
while low <= high:
mid = (low+high)//2
item = nums|[mid]
if x = item:
return mid
elif x < item:

high = mid - 1
- else:

low = mid + 1)
return -1 Find 5

low=4 high=7
5 7 8
4 6 7

Binary search

def bsearch(x, nums):
low = ©
high = len(nums) - 1
-while low <= high:
mid = (low+high)//2
item = nums|[mid]
if x = item:
return mid

low=4 high=7

elif x < item:

high = mid - 1
ot -12345678
o 1

low = mid + 1)
return -1 Find 5

Binary search

def bsearch(x, nums):
low = ©
high = len(nums) - 1
while low <= high:
mid = (low+high)//2
item = nums|[mid]
if x = item:
return mid
elif x < item:
high = mid - 1
else:
low = mid + 1
return -1

Find 5

mid=5
low=4 high=7
5 6 7 8
4 5 6 7

Binary search

def bsearch(x, nums):

low = ©
high = len(nums) - 1
while low <= high: mid=>5
mid = (low+high)//2 low=4 high=7

item = nums|[mid]
if x = item:
return mid

elif x < item:

high = mid - 1
e -[12345678
o 1

low = mid + 1)
return -1 Find 5

item = nums/mid] = 6

Binary search

def bsearch(x, nums):
low = ©
high = len(nums) - 1
while low <= high:
mid = (low+high)//2
item = nums|[mid]
if x = item:
return mid
»elif X < item:
high = mid - 1
else:
low = mid + 1
return -1

Find 5

low44
high=5

3 4 5 6 7

2 3 4 5 6

item = nums/mid] = 6

Binary search

def bsearch(x, nums):
low = ©
high = len(nums) - 1
while low <= high:
mid = (low+high)//2
item = nums|[mid]
if x = item:
return mid
elif x < item:

high = mid - 1
else:

low = mid + 1)
return -1 Find 5

low34
high=5
5 6 7
4 5 6

Binary search

def bsearch(x, nums):

low = ©
high = len(nums) - 1
while low <= high: mid=4

-mid = (low+high)//2
item = nums|[mid] IOW'|4h_ h=E
_ Ig =

if x = item:
return mid
elif x < item:

high = mid - 1
else: - [1 2 3 4 5 6 7
0 1

low = mid + 1 i
return -1 Find 5

Binary search

def bsearch(x, nums):
low = ©
high = len(nums) - 1
while low <= high:
mid = (low+high)//2
item = nums|[mid]
if x = item:
return mid
elif x < item:
high = mid - 1
else:
low = mid + 1
return -1

Find 5

item = nums/mid] =

Binary search

def bsearch(x, nums):
low = ©
high = len(nums) - 1
while low <= high:
mid = (low+high)//2
item = nums|[mid]
if x = item:
return mid
elif x < item:
high = mid - 1
else:
low = mid + 1
return -1

Find 5

mid=4
low44
high=5
3 4 5 Found!
2 3 4 5 6

item = nums|mid] =5

Binary search: Analysis

def bsearch(x, nums): * In each iteration, search space is reduced by
low = © half.
high = len(nums) 1

while low high: * Initially, search in 8 numbers (1~8)

mid = (low+high)//2 * Then, search in 4 numbers (5~8)

item = nums[mid] * Finally, search in one number (5)

1f x = 1tem: * The number of iterations is log,(len(nums))=3
return mid) c :

elif x < item: Logarithmic time complexity
high = mid - 1 » Use four variables: low, high, mid, item

else:
low = mid + 1 * Independent of len(nums)

return -1 Constant space complexity

Ok.... So what?

* Have you heard about the buzzword “BigData”?

* What if you are asked to search in a list of a billion numbers?

Algorithm | Time complexity

Linear search Run billionsof steps

Binary search several dozen steps

Recursion

Recursion

e Recursion is the process of repeating items in a self-similar way.

RECURSION
RECURSION

RECURSION
RECURSION

Here we go again

RECURSION

Here we go again

Recursion

You have the function “Dream” ©

Each time the function dream calls it self
(recursive call), you get into a deeperdream

level.

To wake up from the first dream, you need
to wake up from all dreams !

To wake up you need a kick | The kick in
recursionis the return statement.

The 5 Levels Of

WHO
LEVEL preamep T2

SLEVELT No one...

REA LlTYS We think

|

LEVEL?2 Yusuf

VA \| “The Chemist”
CHASE

)/ LEVEL3
THE
\HOTEL ,

Arthur

‘\\ “The Point Man”

EVEL 4

% SNOW
FORTRESS

h"’ Hu "“-s
AR

h;

~ Eames
“The Forger”

WHO
GOES THERE?

Cobb, Arthur,
Ariadne, Eames,
Saito, Yusuf and
Robert Fischer Jr.

Cobb, Arthur,
Ariadne, Eames,
Saito, Yusuf and
Robert Fischer Jr.

Cobb, Arthur,
Ariadne, Eames,
Saito and
Robert Fischer Jr.

Cobb, Ariadne,
Eames, Saito and

Robert Fischer Jr.

r
Cobb, Ariadne,™
Saito, Robert ==

WHY ARE
THEY THERE?

To drug Fischer
Jr. and bring
his subconscious
into a dream.

Fisher Jr.is
kidnapped. They
force him to give

them random
numbers which are
used later, and
begin planting the
ideain his head
that his father
wants him to break
up the company.

Fischer Jr.is
tricked into believ-
ing Browning is a
traitor. He joins
the team for their
next mission.

Fischer Jr. must be
taken to the fort,
where the idea
they wish to
plant will finally
take hold.

To get Fischer Jr.
* and Saito out.

Fischer Jr.and S

Mal'’s projection =

THE KICK

There isn’t one.

The timer
counts down

and the machine

shuts off.

Yusuf drives
the van offa
bridge. That
fails. A second
Kick occurs
when the van
hits the water.

g

Arthur blows
up an elevator,
simulating
freefall.

.

Eames blows up
the supports of
the fortress,
droppingitand
causing freefall.

.

Ariadne and
Fischer fall off a
building. Cobb
and Saito shoot

themselves.

Calculating Factorial

e Given that Factorial (1)=Factorial (0)=1
e Factorial (5)=5*4*3*2*1=120
* We can write factorial (5) in term of the factorial of smaller numbers:
e Factorial (5) =5 * Factorial (4)
=5 * 4 * Factorial (3)
Factorial (2)
* Factorial (1)
*1=120

* ¥

* X
X X

I
ol U1 U

*

4 %3
4 %3 %72
4 %3 %72

*
*

e Generally: Factorial (x) = x * Factorial (x-1)

Calculating Factorial

def factorial(x): Result =5 * factorial (4)
if(x<2): :
ceturn 1 4 * factorial (3)

return x * factorial(x-1)

3 * factorial (2)
2 * factorial (1)
*1

12
def main(): 0

print(factorial(5))

24

Optional arguments 1n functions

If b is given, use given b

/ If b is not given, use b =10

deffun(a, b=10): Output:
print(a) 100
print(b) 10
100
200
fun(100) 100
fun(100, 200) 200

fun(100, b = 200)

deffun(a=3): Output:

print(a) 2
ifa>0: 1
fun(a-1) 0

5

4

fun() 3
fun(5) 2
1

0)

