
Algorithms Design
& Recursion

CS177 – Recitation 14



Agenda

• What’s	an	Algorithm.
• Search	algorithms
• Linear	search
• Binary	search

• Recursion.
• Optional	arguments	in	functions



What’s an Algorithm

• An	algorithm	is	a	step-by-step	list	of	instructions	to	solve	a	problem.
• An	algorithm	is	like	a	recipe.

Best	Brownies
Directions
1. Preheat	oven	to	350	degrees	F	(175	degrees	C).	Grease	and	flour	 an	8-inch	square	pan.
2. In	a	large	saucepan,	melt	1/2	cup	butter.	Remove	from	heat,	and	stir	in	sugar,	eggs,	and	1	teaspoon	 vanilla.	Beat	in	1/3	cup	

cocoa,	1/2	cup	flour,	 salt,	and	baking	powder.	Spread	batter	into	prepared	pan.
3. Bake	in	preheated	oven	for	25	to	30	minutes.	Do	not	overcook.
4. To	Make	Frosting:	Combine	 3	tablespoons	 softened	butter,	3	tablespoons	 cocoa,	honey,	 1	teaspoon	 vanilla	extract,	and	1	cup	

confectioners'	sugar.	Stir	until	smooth.	Frost	brownies	while	they	are	still	warm.



Search

• How	would	you	find	a	number	in	a	list	of	numbers?

3 7 5 4 6 1 2 8

Find	5
0															1															2															3															4																5															6															7



Search

• How	would	you	find	a	number	in	a	list	of	numbers?

3 7 5 4 6 1 2 8

Find	5
0															1															2															3															4																5															6															7



Search

• How	would	you	find	a	number	in	a	list	of	numbers?

3 7 5 4 6 1 2 8

Find	5
0															1															2															3															4																5															6															7



Search

• How	would	you	find	a	number	in	a	list	of	numbers?

3 7 5 4 6 1 2 8

Find	5

Return	2

0															1															2															3															4																5															6															7



Search

• What	we	did	is	called	“Sequential	search”	or	“Linear	search”.
• Keep	going	through	the	elements	one	by	one	till	you	find	your	match.
• How	can	we	write	this	in	Python?



Sequential Search

def seqSsearch(nums, n):
for i in range(len(nums)):

if nums[i] == n:
return i

return -1

Is	this	the	best	way	to	do	it	!?



Search

• What	happens	if	you	are	searching	among	very	big	number	of	
elements	?

• There	are	also	many	algorithms	solving	the	same	problem.
• We	want	a	good	algorithm.	But	what	defines	“goodness”?



Evaluation of an Algorithm

• We	evaluate	an	algorithm	using	two	criteria's:
• Space	complexity:	How	much	memory	the	algorithm	needs?	In	other	words,	
how	many	variables	the	algorithm	needs?
• Time	complexity:	The	number	of	steps	executed	by	the	algorithms?
• Why	not	just	measure	the	time	the	algorithm	takes	!?

• Different	machines,	architectures	à different	execution	times	!

• We	need	to	express	the	space/time	complexity	in	terms	of	the	data	
size.	For	example:	the	size	of	the	list	we	search	in.



Space Complexity for Sequential Search
def seqSsearch(nums, n):
for i in range(len(nums)):

if nums[i] == n:
return i

return -1

Uses	only	one	variable:	i

• If	len(nums)	equals	5,	this	algorithm	
will	use	only	one	variable	(i).

• If	len(nums)	equals	5000,	this	
algorithm	will	STILL	use	only	one	
variable	(i).

• This	means	the	number	of	variables	
this	algorithm	uses	is	constant	with	
respect	the	number	of	elements	we	
process.

• The	space	complexity	of	this	
algorithm	is	constant.



Time Complexity for Sequential Search
def seqSsearch(nums, n):
for i in range(len(nums)):

if nums[i] == n:
return i

return -1

Checking	if	two	numbers	are	
equal	or	not	is	the	core	
operation	of	this	algorithm.

• If	len(nums)	equals	5,	this	algorithm	
will	check	the	if	condition	5	times.

• If	len(nums)	equals	5000,	this	
algorithm	will	the	if	condition	5000	
times.	

• This	means	the	number	of	times	
the	if	condition	is	evaluated	
depends	on	the	number	of	
elements	we	process.

• The	space	complexity	of	this	
algorithm	is	linear	with	the	size	of	
the	data.



Binary Search

What	if	the	list	of	numbers	is	sorted,	how	can	we	use	that	to	
enhance	the	algorithm?

1 2 3 4 5 6 7 8

3 7 5 4 6 1 2 8



Binary search

def bsearch(x, nums):
low = 0
high = len(nums) - 1
while low <= high:

mid = (low+high)//2
item = nums[mid]
if x = item:

return mid 
elif x < item:
high = mid - 1

else:
low = mid + 1

return -1

1 2 3 4 5 6 7 8
Find	5

0															1															2															3															4																5															6															7



def bsearch(x, nums):
low = 0
high = len(nums) - 1
while low <= high:

mid = (low+high)//2
item = nums[mid]
if x = item:

return mid 
elif x < item:
high = mid - 1

else:
low = mid + 1

return -1

Binary search

1 2 3 4 5 6 7 8

low=0 high=7

Find	5
0															1															2															3															4																5															6															7



def bsearch(x, nums):
low = 0
high = len(nums) - 1
while low <= high:

mid = (low+high)//2
item = nums[mid]
if x = item:

return mid 
elif x < item:
high = mid - 1

else:
low = mid + 1

return -1

Binary search

1 2 3 4 5 6 7 8

low=0 high=7

Find	5

mid=3

0															1															2															3															4																5															6															7



def bsearch(x, nums):
low = 0
high = len(nums) - 1
while low <= high:

mid = (low+high)//2
item = nums[mid]
if x = item:

return mid 
elif x < item:
high = mid - 1

else:
low = mid + 1

return -1

Binary search

1 2 3 4 5 6 7 8

low=0 high=7

Find	5

mid=3

item = nums[mid] = 4
0															1															2															3															4																5															6															7



def bsearch(x, nums):
low = 0
high = len(nums) - 1
while low <= high:

mid = (low+high)//2
item = nums[mid]
if x = item:

return mid 
elif x < item:
high = mid - 1

else:
low = mid + 1

return -1

Binary search

1 2 3 4 5 6 7 8

low=4 high=7

Find	5
0															1															2															3															4																5															6															7



def bsearch(x, nums):
low = 0
high = len(nums) - 1
while low <= high:

mid = (low+high)//2
item = nums[mid]
if x = item:

return mid 
elif x < item:
high = mid - 1

else:
low = mid + 1

return -1

Binary search

1 2 3 4 5 6 7 8

low=4 high=7

Find	5
0															1															2															3															4																5															6															7



def bsearch(x, nums):
low = 0
high = len(nums) - 1
while low <= high:

mid = (low+high)//2
item = nums[mid]
if x = item:

return mid 
elif x < item:
high = mid - 1

else:
low = mid + 1

return -1

Binary search

1 2 3 4 5 6 7 8

low=4 high=7

Find	5

mid=5

0															1															2															3															4																5															6															7



def bsearch(x, nums):
low = 0
high = len(nums) - 1
while low <= high:

mid = (low+high)//2
item = nums[mid]
if x = item:

return mid 
elif x < item:
high = mid - 1

else:
low = mid + 1

return -1

Binary search

1 2 3 4 5 6 7 8

low=4 high=7

Find	5

mid=5

item = nums[mid] = 6
0															1															2															3															4																5															6															7



def bsearch(x, nums):
low = 0
high = len(nums) - 1
while low <= high:

mid = (low+high)//2
item = nums[mid]
if x = item:

return mid 
elif x < item:
high = mid - 1

else:
low = mid + 1

return -1

Binary search

1 2 3 4 5 6 7 8

low=4
high=5

Find	5
item = nums[mid] = 6

0															1															2															3															4																5															6															7



def bsearch(x, nums):
low = 0
high = len(nums) - 1
while low <= high:

mid = (low+high)//2
item = nums[mid]
if x = item:

return mid 
elif x < item:
high = mid - 1

else:
low = mid + 1

return -1

Binary search

1 2 3 4 5 6 7 8

low=4

Find	5

high=5

0															1															2															3															4																5															6															7



def bsearch(x, nums):
low = 0
high = len(nums) - 1
while low <= high:

mid = (low+high)//2
item = nums[mid]
if x = item:

return mid 
elif x < item:
high = mid - 1

else:
low = mid + 1

return -1

Binary search

1 2 3 4 5 6 7 8

low=4

Find	5

mid=4

high=5

0															1															2															3															4																5															6															7



def bsearch(x, nums):
low = 0
high = len(nums) - 1
while low <= high:

mid = (low+high)//2
item = nums[mid]
if x = item:

return mid 
elif x < item:
high = mid - 1

else:
low = mid + 1

return -1

Binary search

1 2 3 4 5 6 7 8

low=4

Find	5

mid=4

item = nums[mid] = 5

high=5

0															1															2															3															4																5															6															7



def bsearch(x, nums):
low = 0
high = len(nums) - 1
while low <= high:

mid = (low+high)//2
item = nums[mid]
if x = item:

return mid 
elif x < item:
high = mid - 1

else:
low = mid + 1

return -1

Binary search

1 2 3 4 5 6 7 8

low=4

Find	5

mid=4

item = nums[mid] = 5

Found!

high=5

0															1															2															3															4																5															6															7



Binary search: Analysis

• In	each	iteration,	search	space	is	reduced	by	
half.
• Initially,	search	in	8	numbers	(1~8)
• Then,	search	in	4	numbers	(5~8)
• Finally,	search	in	one	number	(5)
• The	number	of	iterations	is	log2(	len(nums)	 )=3
• Logarithmic	time	complexity

• Use	four	variables:	low,	high,	mid,	item
• Independent	of	len(nums)
• Constant	space	complexity

def bsearch(x, nums):
low = 0
high = len(nums) - 1
while low <= high:

mid = (low+high)//2
item = nums[mid]
if x = item:

return mid 
elif x < item:
high = mid - 1

else:
low = mid + 1

return -1



Ok…. So what?

• Have	you	heard	about	the	buzzword	“BigData”?
• What	if	you	are	asked	to	search	in	a	list	of	a	billion	numbers?

Algorithm Time	complexity
Linear	search Run	billions	of	steps

Binary	search several	dozen	steps
Win!



Recursion



Recursion

• Recursion	is	the	process	of	repeating	items	in	a	self-similar	way.



Recursion

• You	have	the	function	“Dream”	J
• Each	time	the	function	dream	calls	it	self	
(recursive	call),	you	get	into	a	deeper	dream	
level.
• To	wake	up	from	the	first	dream,	you	need	
to	wake	up	from	all	dreams	!
• To	wake	up	you	need	a	kick	!	The	kick	in	
recursion	is	the	return	statement.



Calculating Factorial
• Given	that	Factorial	(1)=Factorial	(0)=1
• Factorial	(5)	=	5	*	4	*	3	*	2	*	1	=	120
• We	can	write	factorial	(5)	in	term	of	the	factorial	of	smaller	numbers:
• Factorial	(5)	=	5	*	Factorial	(4)

=	5	*	4	*	Factorial	(3)
=	5	*	4	*	3	*	Factorial	(2)
=	5	*	4	*	3	*	2	*	Factorial	(1)
=	5	*	4	*	3	*	2	*	1	=	120

• Generally:	Factorial	(x)	=	x	*	Factorial	(x-1)



Calculating Factorial
Result	=	5	*	factorial	(4)

4	*	factorial	(3)
3	*	factorial	(2)

2	*	factorial	(1)
*	1

def factorial(x):
if(x<2):

return 1
return x * factorial(x-1)

def main():
print(factorial(5))

1

2

6

24

120



Optional arguments in functions



def	fun(	a,	b	=	10	):
print(a)
print(b)

fun(100)
fun(100,	200)
fun(100,	b	=	200)

If	b	is	given,	use	given	b
If	b	is	not	given,	use	b	=	10

Output:
100
10
100
200
100
200



def fun(	a	=	3	):					
print(a)
if	a	>	0:									
fun(	a	- 1)

fun()
fun(	5	)

Output:
3
2
1
0
5
4
3
2
1
0


