# Algorithms Design \& Recursion 

CS177 - Recitation 14

## Agenda

- What's an Algorithm.
- Search algorithms
- Linear search
- Binary search
- Recursion.
- Optional arguments in functions


## What's an Algorithm

- An algorithm is a step-by-step list of instructions to solve a problem.
- An algorithm is like a recipe.


## Best Brownies

Directions

1. Preheat oven to 350 degrees $F(175$ degrees $C)$. Grease and flour an 8 -inch square pan.
2. In a large saucepan, melt $1 / 2$ cup butter. Remove from heat, and stir in sugar, eggs, and 1 teaspoon vanilla. Beat in $1 / 3$ cup cocoa, $1 / 2$ cup flour, salt, and baking powder. Spread batter into prepared pan.
3. Bake in preheated oven for 25 to 30 minutes. Do not overcook.
4. To Make Frosting: Combine 3 tablespoons softened butter, 3 tablespoons cocoa, honey, 1 teaspoon vanilla extract, and 1 cup confectioners' sugar. Stir until smooth. Frost brownies while they are still warm.


## Search

- How would you find a number in a list of numbers?


Find 5

## Search

- How would you find a number in a list of numbers?


Find 5

## Search

- How would you find a number in a list of numbers?


Find 5

## Search

- How would you find a number in a list of numbers?



## Search

- What we did is called "Sequential search" or "Linear search".
- Keep going through the elements one by one till you find your match.
- How can we write this in Python?


## Sequential Search

```
def seqSsearch(nums, n):
    for i in range(len(nums)):
        if nums[i] == n:
        return i
    return -1
```

Is this the best way to do it !?

## Search

- What happens if you are searching among very big number of elements?


## Google Algorithms



- There are also many algorithms solving the same problem.
- We want a good algorithm. But what defines "goodness"?


## Evaluation of an Algorithm

- We evaluate an algorithm using two criteria's:
- Space complexity: How much memory the algorithm needs? In other words, how many variables the algorithm needs?
- Time complexity: The number of steps executed by the algorithms?
- Why not just measure the time the algorithm takes !?
- Different machines, architectures $\rightarrow$ different execution times !
- We need to express the space/time complexity in terms of the data size. For example: the size of the list we search in.


## Space Complexity for Sequential Search

```
def seqSsearch(nums, n):
    for i in range(len(nums)):
    if nums[i] == n:
        return i
    return -1
```

Uses only one variable: i

- If len(nums) equals 5, this algorithm will use only one variable (i).
- If len(nums) equals 5000, this algorithm will STILL use only one variable (i).
- This means the number of variables this algorithm uses is constant with respect the number of elements we process.
- The space complexity of this algorithm is constant.


## Time Complexity for Sequential Search

```
def seqSsearch(nums, n):
    for i in range(len(nums)):
    if nums[i] == n:
        return i
    return -1
```

Checking if two numbers are equal or not is the core operation of this algorithm.

- If len(nums) equals 5, this algorithm will check the if condition 5 times.
- If len(nums) equals 5000, this algorithm will the if condition 5000 times.
- This means the number of times the if condition is evaluated depends on the number of elements we process.
- The space complexity of this algorithm is linear with the size of the data.


## Binary Search

What if the list of numbers is sorted, how can we use that to enhance the algorithm?


## Binary search

```
def bsearch(x, nums):
    low = 0
    high = len(nums) - 1
    while low <= high:
        mid = (low+high)//2
        item = nums[mid]
        if x = item:
        return mid
        elif x < item:
            high = mid - 1
        else:
            low = mid + 1
    return -1
```

| $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

Find 5

## Binary search

```
def bsearch(x, nums):
    low = 0
    high = len(nums) - 1
    while low <= high:
        mid = (low+high)//2
        item = nums[mid]
        if x = item:
        return mid
        elif x < item:
        high = mid - 1
        else:
        low = mid + 1
    return -1
```



Find 5

## Binary search

```
def bsearch(x, nums):
    low = 0
    high = len(nums) - 1
    while low <= high:
    mid = (low+high)//2
    item = nums[mid]
    if x = item:
        return mid
    elif x < item:
        high = mid - 1
    else:
        low = mid + 1
return -1
```



Find 5

## Binary search

```
def bsearch(x, nums):
    low = 0
    high = len(nums) - 1
    while low <= high:
        mid = (low+high)//2
        item = nums[mid]
        if x = item:
        return mid
    elif x < item:
        high = mid - 1
    else:
        low = mid + 1
    return -1
```



Find 5
item $=$ nums[mid] $=4$

## Binary search

```
def bsearch(x, nums):
    low = 0
    high = len(nums) - 1
    while low <= high:
        mid = (low+high)//2
        item = nums[mid]
        if x = item:
            return mid
        elif x < item:
            high = mid - 1
        else:
        low = mid + 1
    return -1
```



Find 5

## Binary search

```
def bsearch(x, nums):
    low = 0
    high = len(nums) - 1
    while low <= high:
        mid = (low+high)//2
        item = nums[mid]
        if x = item:
        return mid
        elif x < item:
        high = mid - 1
        else:
        low = mid + 1
    return -1
```



Find 5

## Binary search

```
def bsearch(x, nums):
    low = 0
    high = len(nums) - 1
    while low <= high:
        mid = (low+high)//2
        item = nums[mid]
        if x = item:
        return mid
    elif x < item:
        high = mid - 1
    else:
        low = mid + 1
    return -1
```



Find 5

## Binary search

```
def bsearch(x, nums):
    low = 0
    high = len(nums) - 1
    while low <= high:
        mid = (low+high)//2
        item = nums[mid]
    if x = item:
        return mid
    elif x < item:
        high = mid - 1
    else:
        low = mid + 1
    return -1
```



Find 5
item $=$ nums $[$ mid $]=6$

## Binary search

```
def bsearch(x, nums):
    low = 0
    high = len(nums) - 1
    while low <= high:
        mid = (low+high)//2
        item = nums[mid]
        if x = item:
            return mid
        elif x < item:
        high = mid - 1
        else:
        low = mid + 1
        return -1
```



Find 5
item $=$ nums $[$ mid $]=6$

## Binary search

```
def bsearch(x, nums):
    low = 0
    high = len(nums) - 1
    while low <= high:
    mid = (low+high)//2
    item = nums[mid]
    if x = item:
        return mid
        elif x < item:
        high = mid - 1
        else:
        low = mid + 1
    return -1
```



Find 5

## Binary search

```
def bsearch(x, nums):
    low = 0
    high = len(nums) - 1
    while low <= high:
        mid = (low+high)//2
        item = nums[mid]
        if x = item:
        return mid
        elif x < item:
        high = mid - 1
        else:
        low = mid + 1
    return -1
```



Find 5

## Binary search

```
def bsearch(x, nums):
    low = 0
    high = len(nums) - 1
    while low <= high:
        mid = (low+high)//2
        item = nums[mid]
        if x = item:
        return mid
    elif x < item:
        high = mid - 1
    else:
        low = mid + 1
    return -1
```



Find 5
item $=$ nums[mid] $=5$

## Binary search

```
def bsearch(x, nums):
    low = 0
    high = len(nums) - 1
    while low <= high:
        mid = (low+high)//2
        item = nums[mid]
        if x = item:
        return mid
        elif x < item:
            high = mid - 1
        else:
        low = mid + 1
    return -1
```



```
Find 5
item \(=\) nums \([\) mid \(]=5\)
```


## Binary search: Analysis

```
def bsearch(x, nums):
    low = 0
    high = len(nums) - 1
    while low <= high:
        mid = (low+high)//2
        item = nums[mid]
        if x = item:
            return mid
        elif x < item:
            high = mid - 1
        else:
            low = mid + 1
    return -1
```

- In each iteration, search space is reduced by half.
- Initially, search in 8 numbers ( $1^{\sim} 8$ )
- Then, search in 4 numbers ( $5 \sim 8$ )
- Finally, search in one number (5)
- The number of iterations is $\log _{2}$ ( len(nums) ) $=3$
- Logarithmic time complexity
- Use four variables: low, high, mid, item
- Independent of len(nums)
- Constant space complexity


## Ok.... So what?

- Have you heard about the buzzword "BigData"?
- What if you are asked to search in a list of a billion numbers?


Recursion

## Recursion

- Recursion is the process of repeating items in a self-similar way.



## Recursion

- You have the function "Dream" :)
- Each time the function dream calls it self (recursive call), you get into a deeper dream level.
- To wake up from the first dream, you need to wake up from all dreams!
- To wake up you need a kick! The kick in recursion is the return statement.

The 5 Levels Of INCEPTION


## Calculating Factorial

- Given that Factorial ( 1 )=Factorial $(0)=1$
- Factorial (5) $=5$ * 4 * 3 * 2 * $1=120$
- We can write factorial (5) in term of the factorial of smaller numbers:
- Factorial (5) $=5$ * Factorial (4)

$$
\begin{aligned}
& =5 * 4 * \text { Factorial }(3) \\
= & 5 * 4 * 3 * \text { Factorial }(2) \\
= & 5 * 4 * 3 * 2 * \text { Factorial (1) } \\
= & 5 * 4 * 3 * 2 * 1=120
\end{aligned}
$$

- Generally: Factorial $(x)=x$ * Factorial ( $x-1$ )


## Calculating Factorial



## Optional arguments in functions

If $b$ is given, use given $b$
If $b$ is not given, use $b=10$
deffun( $a, b=10)$ :
print(a)
print(b)
fun(100)
fun(100, 200)
fun(100, b = 200)

Output:
100
10
100
200
100
deffun( $a=3$ ):
print(a)
if $a>0$ : 1
fun( $a-1$ )
fun()
fun( 5 )
3221
0

Output:

