
Data Collections
CS 177 – Recitation 12

Announcements

• Midterm 2 on Nov 17, Tuesday, 6:30-7:30 pm, WTHR 200
• Material: Chapter 1-11, Recitations, labs and lectures program

• Project 4 will be up soon

Objectives

• Review the use of lists to represent a collection of data

• Other Data Collections in Python
• Dictionaries

• Sets

• Tuples

Sequences

• When we have multiple elements stored in order in memory, it is
called a List

• When we have multiple characters stored in order in memory, it is
called a String

• Both of these structures are sequence structured, individual elements
can be accessed by indexing

• Ranges, List, Tuples and String are indexed from 0

Sequence Example - Lists – Define

X = [“A”, “B”, “C”, “D”]

X = “ABCD”

X = [“A”, [“B1”, “B2”], 23, “D”]

That’s a String, different from a list

That’s a List

Lists are more “general
purpose”
Lists allow heterogeneous
elements, like strings
numbers or even other Lists

X = [2*i for i in range(10)]

List comprehension

Sequences – Indexing and Slicing

• [] notation can be used to index into lists, ranges and strings.

• A[i] is the name for ith element for a sequence
• The index starts from 0 (So, (i+1)th element if indexing from 1) to

(length-1)
• Indexing can also be done from -1 to -length

• Slicing is done with : inside [] notation
• Slicing returns a subsequence of the original sequence back
• Just like range function, slicing can take three arguments (start, stop,

step)

Sequences – Indexing and Slicing

X = [1,2,3,4,5,6,7,8,9,10]

print(X[0])

print(X[-1])

print(X[0:5])

print(X[:3])

print(X[3:])

print(X[-1:])

print(X[:-1])

1

10

[1,2,3,4,5]

[1,2,3]

[4,5,6,7,8,9,10]

[10]

[1,2,3,4,5,6,7,8,9]

Sequences – Indexing and Slicing

X = [1,2,3,4,5,6,7,8,9,10]

print(X[4:8])

print(X[4:8:1])

print(X[4:8:2])

print(X[4:8:-1])

print(X[8:4:-1])

print(X[4::1])

print(X[:8:1])

[5,6,7,8]

[5,6,7,8]

[5,7]

[]

[9,8,7,6]

[5,6,7,8,9,10]

[1,2,3,4,5,6,7,8]

Sequence/List Operations

• Concatenation
[1,2,3]+[4,5,6] [1,2,3,4,5,6]

• Repetition
[1,2,3]*2 [1,2,3,1,2,3]

• Indexing
[1,2,3][1] 2

• Length
len([1,2,3]) 3

Sequence/List Operations

• Iteration
for x in [1,2,3]:

print(x)
1
2
3

• Membership
X = 2 in [2,3]
print(X)

True

• Slicing
[1,2,3][1:2] [2]

Sequence/List Operations
• <list>.append(x): Add element x to the end of the list
A=[1,2,3,4,5]
A.append(6)

[1,2,3,4,5,6]

• <list>.sort(): Sort the list, A comparison function can be an argument
A=[4,6,2,3,5,1]
A.sort()

[1,2,3,4,5,6]

• <list>.reverse(): Reverse the list
A=[1,2,3,4,5]
A.reverse()

[5,4,3,2,1]

• <list>.index(x): Returns the index of the first occurance of x
A=[4,6,3,3,5,1]
A.index(3)

2

Sequence/List Operations
• <list>.insert(i,x): insert element x at index I (does not replace existing)
A=[1,2,3,4,5]
A.insert(2,6)

[1,2,6,3,4,5]

• <list>.count(x): Returns the number of occurrences of x in list
A=[4,6,3,3,5,1]
A.count(3)

2

• <list>.remove(x): Deletes the first occurrence of x
A=[1,2,3,4,5]
A.remove(3)

[1,2,4,5]

• <list>.pop(i): Delete the ith element and return its’ value
A=[4,6,3,3,5,1]
A.pop(2)

[4,6,3,5,1]

Answer: C
I. cs177
II. [(‘c’, ‘s’, 1, 7, 7)]
III. cs177
IV. 177

Answer: B

len(x) = 7, len(y) = 6

Dictionaries, Sets and Tuples

• A collection of unordered values accessed by key rather than index is
called a Dictionary

• A collection of unordered and non duplicated values is called a Set

• A collection of ordered and immutable sequence of elements is called
a tuple

• Note: As Dictionary/Set are unordered, there is no accessing of
elements by index or slicing, instead there are other functions to
check membership (dictionary elements can be accessed by key)

Differences between Data Collections

Data Collection Description

List Sequentially ordered, mutable, can have duplicates, heterogeneous elements

String Sequentially ordered, immutable, can have duplicates, character elements

Dictionary Unordered, mutable, no duplicates, heterogeneous elements

Set Unordered, mutable, no duplicates, heterogeneous elements

Tuple Sequentially ordered, immutable, can have duplicates, heterogeneous elements

Tuples

• A collection of ordered and immutable sequence of elements is called
a tuple

• A Tuple is similar to a list, the difference being they are immutable

• Tuples normally used for heterogeneous items (but not required)

• Tuples are also a sequence like Strings and Lists, so indexing and
slicing works with tuples as well

• Tuples are specifically used in value packing and unpacking, which is
basically the mechanism via which functions return multiple return
values

Tuples – Define and Use

X = (23,45,67)
X = 23,45,67
X = tuple([2,3,4])

X[0:2]

Tuple Definition

Indexing works, and so does
slicing

X = ()
X = (23,)

No Tuple comprehension, as tuples are immutable and
looping and adding values is not allowed

Tuples of length 0 and 1
Tuple Definitions for length 1
must be followed by a
comma

Tuples – Update and Deletion

Tup1 = (3,4)

Tup1[0]=5

Lst = list(tup1)
Lst[0] = 5
Tup1 = tuple(Lst)

del Lst[0]
Tup1 = tuple(Lst)

This operation is not
allowed
So, convert the tuple to a
list, modify and convert
back.

(5,4)

Similarly for deletion
(4,)

As Tuples are immutable, we cannot update or delete elements in a tuple.
However, we can create new tuples by taking elements from existing tuples

Tuple Operations
• Length:
A=(1,2,3,4,5)
len(A)

5

• Repetition:
A=(4,)*2 (4,4)

• Iteration:
for x in (1,2,3):

print(x)
1
2
3

• Concatenation:
(1,2,3)+(4,5,6) (1,2,3,4,5,6)

Tuple Operations
• Membership
X = 2 in (2,3)
print(X)

True

• max(<tuple>): Maximum entry in the Tuple
A=(4,6,2,3,5,1)
max(A)

6

• <tuple>.index(x): Returns the index of the first occurrence of x
A=(4,6,3,3,5,1)
A.index(3)

2

• <tuple>.count(x): Returns the number of occurrences of x in tuple
A=(4,6,3,3,5,1)
A.count(3)

2

Other Sequence operators like sort(),
reverse(), remove() etc that modify
sequences are not present for tuples

Dictionaries

• A collection of unordered values accessed by key rather than index is
called a Dictionary

• Also known as associative arrays

• Instead of indexing by numbers like sequences, it is indexed by keys

• Think of it as a collection of (key,value) pairs with only one value for a
key
• Dictionaries can’t be accessed by slicing

• But they can indexed by keys

Dictionaries – Define and Use

X = {‘AA’:1, 23:’BB’}

X = dict([(‘AA’,1),(23,’BB’)])

X[‘randKey’] = ‘randValue’

Dictionary Definition

Indexing works, but by Keys
Slicing Doesn’t work

X = {i: 2*i for i in range(5)}

Dictionary comprehension

Key

Value

Dictionary Definition from a
list of Tuples (can use any
sequence of sequences)

Dictionary Operations

• Length
len({12:21, 5:7}) 2

• Iteration
for x in {1:4,2:5,3:6}:

print(x)

for x,y in {1:4,2:5,3:6}.items():
print(x,”:”,y)

1
2
3

1:4
2:5
3:6

• Membership
X = 2 in {2:4,3:5}
print(X)

True

Iteration and Membership on
Dictionary work on keys

Dictionary Operations
• <dict>.clear(): Empty the Dictionary
A={1:2,3:4}
A.clear()

{}

• <dict>.get(key): Similar to Indexing
A={1:2,3:4}
A.get(3)

4

• <dict>.items(): Returns Lists of dict’s tuples (key, value) pairs
A={1:2,3:4}
A.items()

dict_items[(1,2),(3,4)]

Sequence methods that employ
order don’t work on dictionary and
on sets, like sort(), reverse() etc,

Dictionary Operations
• <dict>.keys(): Returns a list of Dictionary’s keys
A={1:2,3:4}
A.keys()

[1,3]

• <dict>.values(): Returns a list of Dictionary’s values
A={1:2,3:4}
A.values()

[2,4]

• <dict1>.update(<dict2>): Adds dict2 entries to dict1
A={1:2,3:4}
A.update({5:6})

{1:2,3:4,5:6}

• dict.fromkeys(<listKeys>): Creates a new dictionary with the keys
dict.fromkeys([8,9]) {8:None,9:None}

Answer: A

Answer: A

Sets

• A collection of unordered and non duplicated values is called a Set

• Follow the abstract mathematical concept of a set
• A collection of unique values

• Common use cases are membership testing, removing duplicates, set
operations such as intersection and union etc

Sets– Define and Use

X = {2,3,4}

X = set({})

###X[‘randKey’]

X = {2,3,4,3}
print(X)
{2,3,4} Unique Values

Set Definition
Empty Set must defined with
the constructor, {} defines a
dictionary

Unordered, and slicing and
indexing both do not work

Set Operations

• Length:
len({12, 5}) 2

• Iteration:
for x in {1,2,3}:

print(x)
1
2
3

• Membership:
X = 2 in {2,3}
print(X)

True

• Set Containment
{1}.issubset({1,2,3})
{1,2,3}.issuperset({1})

True
True

Set Operations
• <set>.clear(): Empty the Set
A={1,2}
A.clear()

{}

• <set>.add(x): Adds x to the Set
A={1,3}
A.add(2)

{1,2,3}

• <set>.remove(x): Removes x if present, raises KeyError Otherwise
A={1,3}
A.remove(3)

{1}

• <set>.discard(x): Removes x if present
A={1,3}
A.discard(3)

{1}

Sequence methods that employ
order don’t work on sets, like sort(),
reverse() etc,

Set Operations
• <set1>.update(<set2>): Adds set2 entries to set1
A={1,3}
A.update({5})

{1,3,5}

• Set Theory Operations
• <set1>.intersection(<set2>): New Set with elements common to both sets

• <set1>.union(<set2>): New Set with elements from both sets

• <set1>.difference(<set2>): New Set with elements in set1 but not in set2

• <set1>.symmetric_difference(<set2>): New Set with elements in either set1 or
set2, but not in both

Answer: B

QUESTIONS?

