
Data Collections
and

Random Numbers
CS 177 – Recitation 9

Exam 1

• Exam key is posted in wiki. Check the solution and learn.

• Average: 63.54

• Median: 64

Question: is the class final grade curved?

Answer: No, your final grade consists of:

Lab 25% + Project 25% + 3 Exams 50%

You still have the chance to improve

Projects

• Start working early and DO NOT procrastinate

• Do not make assumptions, if it’s not clear, ask.

• Code Skeleton is mandatory

• Grading is NOT only about the output

• Make sure to correctly turnin projects, we post the list of students
who don’t have a submitted project. Check it.

• We might not accept un-submitted projects

Office hours

• Prepare your questions in advance

• Try to meet your GTA during the official office hours.

• Due to class size GTAs might not be able to see you individually

• GTA will help you troubleshoot the issue but cannot fix your code

• Example of unacceptable questions:
• Emailing your entire code

• Seeking assistance without trying by yourself first

Piazza

• We want to hear about your issues and get feedback, a good piazza
post is:

subjective, states the facts, addresses the shortcomings, proposes
solutions with a positive tone.

• Notice that post authors are not anonymous to class instructors

Attendance

• Missing 4 classes or 4 recitation will result in a penalty of 2.5%

• Ask your GTA about Recitation attendance

• Ask Prof. Rego about class attendance

Grading

• Redirect your email to the right person (not course instructor or
coordinate):

• Lab grade: UTA

• Project grade: the posted GTA

Finally …

• Learning how to code is a very useful skill

• Programming skills are gained by a lot practice

• Make good use of your lab, recitation and office hours time

• CS177 is a 4 credit hours class, allocate sufficient time

Objectives

• Recap of Dictionaries

• Sets

• Random Numbers

• Unit Testing

Dictionaries – Recap

X = {‘AA’:1, 23:’BB’}

X = dict([(‘AA’,1),(23,’BB’)])

X[‘randKey’] = ‘randValue’

Dictionary Definition

Indexing works, but by Keys
Slicing Doesn’t work

X = {i: 2*i for i in range(5)}

Dictionary comprehension

Key

Value

Dictionary Definition from a
list of Tuples (can use any
sequence of sequences)

Examples

• Convert an English sentence to French
• You are given an English to French dictionary as a python “dict” type

• Don’t worry about Grammar

Examples

frenchDict = {"I":"je", "am":"suis", "love":"aimer",
"very":"très", "much":"beaucoup"}

frenchDict[“happy”]=“heureux”

english = "I love python very much . I am very happy"

for englishWord in english.split():
if (englishWord in frenchDict):

print(frenchDict[englishWord], end=" ")
else:

print(englishWord, end=" ")

• Convert an English sentence to French
• You are given an English to French dictionary as a python dict type

• Don’t worry about Grammar

•

Examples

frenchDict = {"I":"je", "am":"suis", "love":"aimer",
"very":"très", "much":"beaucoup"}

frenchDict[“happy”]=“heureux”

english = "I love python very much . I am very happy"

for englishWord in english.split():
if (englishWord in frenchDict):

print(frenchDict[englishWord], end=" ")
else:

print(englishWord, end=" ")

• Convert an English sentence to French
• You are given an English to French dictionary as a python dict type

• Don’t worry about Grammar

•

Output:

je aimer python très beaucoup . je suis
très heureux

Sets

• A collection of unordered and non duplicated values is called a Set

• Follow the abstract mathematical concept of a set
• A collection of unique values

• Common use cases are membership testing, removing duplicates, set
operations such as intersection and union etc

Sets– Define and Use

X = {2,3,4}

X = set({})

###X[‘randKey’]

X = {2,3,4,3}
print(X)
{2,3,4} Unique Values

Set Definition
Empty Set must defined with
the constructor, {} defines a
dictionary

Unordered, and slicing and
indexing both do not work

Set Operations

• Length:
len({12, 5}) 2

• Iteration:
for x in {1,2,3}:

print(x)
1
2
3

• Membership:
X = 2 in {2,3}
print(X)

True

• Set Containment
{1}.issubset({1,2,3})
{1,2,3}.issuperset({1})

True
True

Set Operations
• <set>.clear(): Empty the Set
A={1,2}
A.clear()

{}

• <set>.add(x): Adds x to the Set
A={1,3}
A.add(2)

{1,2,3}

• <set>.remove(x): Removes x if present, raises KeyError Otherwise
A={1,3}
A.remove(3)

{1}

• <set>.discard(x): Removes x if present
A={1,3}
A.discard(3)

{1}

Sequence methods that employ
order don’t work on sets, like sort(),
reverse() etc,

Set Operations
• <set1>.update(<set2>): Adds set2 entries to set1
A={1,3}
A.update({5})

{1,3,5}

• Set Theory Operations
• <set1>.intersection(<set2>): New Set with elements common to both sets

• <set1>.union(<set2>): New Set with elements from both sets

• <set1>.difference(<set2>): New Set with elements in set1 but not in set2

• <set1>.symmetric_difference(<set2>): New Set with elements in either set1 or
set2, but not in both

Examples

• Given a String line, find all the vowels in the string
• Let us implement this with Sets

Examples

• Given a String line, find all the vowels in the string
• Let us implement this with Sets

• Create a set of all the vowels in line.

vowels = set()

for x in line:
if x==“a” or x==“e” or x==“i” or x==“o” or x==“u”:

vowels.add(x)

print(vowels)

Empty Set

Add character to the set

Examples

• Given a String line, find all the vowels in the string
• Let us implement this with Sets

• Create a set of all the vowels in line.

vowels = set()

for x in line:
if x==“a” or x==“e” or x==“i” or x==“o” or x==“u”:

vowels.add(x)

print(vowels)

Output:

Line: “abcdef”
Vowels: {“a”,”e”}

Line: “aabcd”
Vowels: {“a”}

Random Library

• Sometimes we want the computer to pick a random number in a
given range, pick a random element from a list, pick a random card
from a deck, flip a coin, etc.

• The random module provides access to functions that support these
types of operations. The random module is another library of
functions that can extend the basic features of python.

Integer Random Number

• If we wanted a random integer, we can use the randint function.

• Randint accepts two parameters: a lowest and a highest number.

• For example:

import random

b = random.randint(0,5)

print("Generated random number is", b)

Random Choice

• random.choice function is used in order to Generate a random value
from a sequence.

• For example:

import random

list1 = ['red','green','blue','brown']

print(random.choice(list1))

Shuffle function

• The shuffle function, shuffles the elements in list in place, so they are
in a random order.

• Syntax: random.shuffle(list)

Shuffling example

from random import shuffle

list1 = [[i] for i range(10)]

print("Before shuffling", list1)

shuffle(list1)

print("After shuffling", list1)

Randrange function

• Random.randrange function is used to generate a randomly selected
element from range(start, stop, step).

• For example:

import random

for i in range(10):

print(random.randrange(0,100,5))

Randrange example output

Flip a Coin Example

import random

def coinToss(number):

heads = 0

tails = 0

for i in range(number): #range has start defaulted to 0

flip = random.randint(1,2)

if(flip == 1):

heads = heads + 1

else:

tails = tails + 1

return heads,tails

heads, tails = coinToss(10)

print("Number of heads:",heads)

print("Number of tails:",tails)

Some possible outputs

Unit Testing

• In computer programming, unit testing is a software testing method
by which individual units of source code, sets of one or more
computer program modules together with associated control data,
usage procedures, and operating procedures, are tested to determine
whether they are fit for use

• Intuitively, one can view a unit as the smallest testable part of an
application

• a unit could be an entire program, but it is more commonly an
individual function

Unit Testing Example

• Consider the program that we wrote for Project-1. It consisted of 2
functions the computeValue() function and the main() function. In
order to test the implementation of our program is correct and we
have not introduced any errors, it is always a good practice to test the
implementation of our program at the lowest levels of the structure.

• So for our project1 program to work correctly, we need to test its
individual components separately. So we will test the computeValue()
function separately. We do this by importing our entire project-1
program and execute the computeValue() function as shown in the
next slide.

Unit Testing Example

>>> import project1

>>> project1.computeValue (“New”, True, True, True)

13

>>> project1.computeValue (“Used”, True, False, True)

11

>>> project1.computeValue (“New”, True, False, True)

12

>>> project1.computeValue (“Used”, True, True, True)

12

Unit Testing Example
def computeValue(condition, gps, wifi, camera):

Declare and initialize variable (integer) to accumulate value of the phone

value = 0

Increment value of variable based on its features

if (condition == "New"):

value += 10

if (condition == "Used"):

value += 9

if (camera== True):

value += 1

if (wifi== True):

value += 1

if (gps== True):

value += 1

return value

Code for computeValue() function of Project-1

Unit Testing Example

• Notice that the computeValue() function takes 4 arguments and they
are:

• Condition-It can take either the value of “New” or “Used”

• Gps-It can take either the value of “True” or “False”

• Wifi-It can take either the value of “True” or “False”

• Camera-It can take either the value of “True” or “False”

• So its possible to test the computeValue() function for 16 possible
different inputs

Exercise-1

• Try to execute all the possible 16 unit test case scenarios for the
computeValue() function which you wrote for Project-1

Exercise-2

• How would you do unit testing for the program that you wrote for
Lab-05?

QUESTIONS?

