
1

CS177 Python Programming

Recitation 8:
Lists Comprehension,

Other Sequence of Data Types

What will we see today?

•  Lists Comprehension
•  Tuples
•  1-D Arrays
•  2-D Arrays (Matrices)
•  Dictionaries

List comprehension
Let’s start with some basics. Suppose you
want to create an empty list
>>> my_list = []
>>> my_list[0] = 10

Traceback (most recent call last):
File "<pyshell#10>", line 1, in <module>
my_list[0] = 10
IndexError: list assignment index out of
range
>>>

 This breaks because my_list is an empty list so you can’t set an
element of an empty list

List comprehension
So, to add to an empty list you have to
append the element
>>> my_list = []
>>> my_list.append(10)
>>> print(my_list[0])
10

The first element appended will be referenced with the index 0.
Similarly, the second element will be referenced with the index 1 and
son on.

>>> my_list = []
>>> my_list.append(10)
>>> my_list.append(20)
>>> print(my_list)
[10, 20]

What is the index of this element

What is the index of this element

List comprehension
Suppose now you want to create a list of
squares
A first approach:

>>> squares = []
>>> for x in range(10):
... squares.append(x**2)
...
>>> print(squares)
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

A second approach:

>>>squares = [x**2 for x in range(10)]

Note that this x is the one in the
for loop

List comprehension

A list comprehension consists of brackets
containing an expression followed by a for
clause, then zero or more for or if clauses.
The result will be a new list resulting from
evaluating the expression in the context of
the for and if clauses which follow it. Let’s
see another example.

List comprehension

Example: This list comprehension combines the
elements of two lists if they are not equal:

>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

Mandatory for clause Optional for clause Optional if clause

List comprehension

More examples:

>>> vec = [-4, -2, 0, 2, 4]
>>> # create a new list with the values doubled
>>> [x*2 for x in vec]
[-8, -4, 0, 4, 8]
>>> # filter the list to exclude negative numbers
>>> [x for x in vec if x >= 0]
[0, 2, 4]
>>> # apply a function to all the elements
>>> [abs(x) for x in vec]
[4, 2, 0, 2, 4]

List comprehension

An example containing complex expressions:

>>> from math import pi
>>> [str(round(pi, i)) for i in range(1, 6)]
['3.1', '3.14', '3.142', '3.1416', '3.14159']

Tuples

•  So far we have two sequence of data types:
strings and lists

•  As Python evolves, new sequence of data types
are added

•  A tuple is a new sequence of data types with its
own characteristics

Tuples

•  A Tuple consists of a number of values
separated by comma

•  Tuples are immutable
•  Tuples can contain mutable objects as elements
•  Elements can be of any type
•  Tuples can be nested
•  Let’s see some examples

Tuples

Some examples and properties
 >>> t = 12345, 54321, 'hello!'
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!')
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, 'hello!'), (1, 2, 3,
4, 5))

>>> # Tuples are immutable:
... t[0] = 88888
Traceback (most recent call last):
 File "<stdin>", line 1, in
<module>
TypeError: 'tuple' object does not
support item assignment
>>> # but they can contain
mutable objects:
... v = ([1, 2, 3], [3, 2, 1])
>>> v
([1, 2, 3], [3, 2, 1])

Properties

Also notice the round parenthesis:
it different from lists

Tuples

Creating tuples with 0 or 1 item
 >>> empty = ()
>>> singleton = 'hello', # <-- note trailing comma
>>> len(empty)
0
>>> len(singleton)
1
>>> singleton
('hello',)

1-D Arrays

•  I other programming languages, an array is a
collection of items of the same data type

•  Python does not include such a structure
•  In Python arrays are implemented using lists

with elements of the same data type

1-D Arrays

You can implement list comprehension to create
and initialize an array

>>> my_array = [0 for i in range(10)]
>>> print (my_array)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

This basically just creates an element 0 as many times the for
loop runs

2-D Arrays: Matrices

•  Matrices in mathematics are arrays of numbers
or variables arranged in both rows and columns.

•  Each number or variable contained within the
matrix can be identified by its position in the row
and column.

2-D Arrays: Matrices

•  Each element of the matrix has a unique position
determined by an index i and at index j.

•  In the matrix below: the number 1, is defined to
be in position 0,0 (located in row index 0 and
column index 0)

What are the
indexes of number
8 in this matrix?

2-D Arrays: Matrices

Matrices as 1-D arrays are encoded in Python
using lists
>>> myMatrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
>>> numRows = len(myMatrix)
>>> numComumns = len(myMatrix[0])
>>> print(numRows)
4
>>> print(numColumns)
3

2-D Arrays: Matrices
Indexing in the matrix:
>>> myMatrix = [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
>>> print(myMatrix[0][0])
?
>>> print(myMatrix[3][2])
?
>>> print(myMatrix[1][2])
?
>>> print(myMatrix[2][0])
?
>>> print(myMatrix[2][3])
?

2-D Arrays: Matrices
Indexing in the matrix:
>>> myMatrix = [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
>>> print(myMatrix[0][0])
1
>>> print(myMatrix[3][2])
12
>>> print(myMatrix[1][2])
6
>>> print(myMatrix[2][0])
7
>>> print(myMatrix[2][3])
Traceback (most recent call last):
File "<pyshell#5>", line 1, in <module>
print(myMatrix[2][3])
IndexError: list index out of range

2-D Arrays: Matrices

Creating a Matrix: We are going to create a 5 ×4
matrix populated with 0s.
>>> #columns creates a list of length 4
>>> columns = 4
>>> rows = 5
>>> #The for loop duplicates that list rownumber of times
>>> x = [[0]*columns for i in range(rows)]
>>> print(x)
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

Remember:
>>> [0]*4
>>> [0, 0, 0, 0]

2-D Arrays: Matrices

Traversing a Matrix: When traversing a matrix you
are going to need nested loops to iterate through
each row and column.
 myMatrix = [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
for i in range(0,len(myMatrix)):
 if(i != 0):
 print()
 for j in range(0,len(myMatrix[0])):
 print(str(myMatrix[i][j])+'\t',end = "")

What would be the output?

Remember:
len(myMatrix) = # rows
lenglen(myMatrix[i]) = # columns

2-D Arrays: Matrices

Exercise 1:
 rows = len(myMatrix)
rows = len(myMatrix[0])
>>> for i in range(rows):
 print (‘Row : ’ + str(i))
 for j in range(columns):
 print(myMatrix[i][j])

 Row: 0
1
2
3
Row: 1
4
5
6
Row: 2
7
8
9
Row: 3
10
11
12

What would be the output?

2-D Arrays: Matrices

Exercise 2: Fill the ‘?’
 >>> myMatrix2 = [[10,20,33],[40,50,65],[12,2,79]]
>>> exm1 = myMatrix2[1][2]
>>> exm2 = myMatrix2[2][0]
>>> exm3 = myMatrix2[0][3]
>>> print(exm1)
?
>>> print(exm2)
?
>>> print(exm3)
?

2-D Arrays: Matrices

Exercise 2: Fill the ‘?’
 >>> myMatrix2 = [[10,20,33],[40,50,65],[12,2,79]]
>>> exm1 = myMatrix2[1][2]
>>> exm2 = myMatrix2[2][0]
>>> exm3 = myMatrix2[0][3]
>>> print(exm1)
65
>>> print(exm2)
12
>>> print(exm3)
ERROR!

2-D Arrays: Matrices

Exercise 3: Write code for creating a matrix with 5
rows and 4columns. Then make the value 1 only if
the row index is equal to the column index.

2-D Arrays: Matrices

Exercise 3: Write code for creating a matrix with 5
rows and 4columns. Then make the value 1 only if
the row index is equal to the column index.

rows = 5
columns = 4
Matrix = [[0]*columns for i in range(rows)]
for i in range(rows):
 for j in range(columns):
 if (i == j):
 Matrix[i][j] = 1

2-D Arrays: Matrices

Exercise 4: What should be the output of the
following code?
rows = 5
columns = 5
M = [[0]*columns for i in range(rows)]
for i in range(rows):
 if(i!= 0):
 print()
 for j in range(columns):
 if i+j == 4:
 M[i][j] = 1
 print(str(M[i][j])+'\t',end = "")

2-D Arrays: Matrices

Exercise 4: What should be the output of the
following code?

2-D Arrays: Matrices

Matrix Multiplication:

2-D Arrays: Matrices

Matrix Multiplication
A = [[1,0][-3,2]]
x = [[-1,4][3,5]]
rows = 2
columns = 2
M = [[0]*columns for iin range(rows)]
#iterate through rows of A
For i in range(rows):
 #iterate through columns of x
 for j in range(columns):
 #iterate through rows of x
 for k in range(rows):
 M[i][j] += A[i][k]*x[k][j]
print(M)

Dictionaries

•  Unlike sequences, which are indexed by a range
of numbers, dictionaries are indexed by keys

•  Keys must be of any immutable type
•  Strings and numbers can always be keys
•  Tuples can be used as keys if they contain only

strings, numbers, or tuples
•  If a tuple contains any mutable object either

directly or indirectly, it cannot be used as a key
•  Lists cannot be used as keys

Dictionaries

•  It is best to think of a dictionary as an unordered
set of key: value pairs, with the requirement that
the keys are unique (within one dictionary).

•  A pair of braces creates an empty dictionary: {}
•  Placing a comma-separated list of key:value

pairs within the braces adds initial key:value
pairs to the dictionary;

•  This is also the way dictionaries are written on
output.

Dictionaries

•  The main operations on a dictionary are storing
a value with some key and extracting the value
given the key.

•  It is also possible to delete a key:value pair with
del.

•  If you store using a key that is already in use,
the old value associated with that key is
forgotten.

•  It is an error to extract a value using a non-
existent key.

Dictionaries

Examples
>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127
>>> tel
{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel['jack']
4098
>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel
{'guido': 4127, 'irv': 4127, 'jack': 4098}
>>> tel.keys()
['guido', 'irv', 'jack']
>>> 'guido' in tel
True

Creating a dictionary

Adding a new pair key:value

Reading the value of an
existing pair

Deleting an existing parir

Getting the keys of the
dictionary

Validating the existence of a
key:value pair in the
dictionary

Dictionaries

The dict() constructorbuilds dictionaries directly
from sequences of key-value pairs:
>>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])
{'sape': 4139, 'jack': 4098, 'guido': 4127}

Dictionaries

In addition, dict comprehensions can be used to
create dictionaries from arbitrary key and value
expressions:

>>> {x: x**2 for x in (2, 4, 6)}
{2: 4, 4: 16, 6: 36}

38

Thank you!

