
1

CS177 Python Programming

Recitation 6:
Loop Structures and Booleans

Before starting, let’s review

•  Variables: “mutable” vs “non-mutable”
•  Garbage Collection
•  How we pass arguments to a function

Mutable vs Non-Mutable

•  Mutable Variables:
–  lists

•  Non-Mutable Variables:
–  int, float, string

What does it mean?

Non-Mutable Variables: int, float

def	 main():	
	 	 	 x	 =	 5.5	
	
	 	 	 y	 =	 10	
	
	 	 	 x	 =	 x	 +	 y

	 	

Memory

X	 	
5.5	 	

10	 	

15.5	 	

y	 	

What happens with the first 5.5?
The Garbage Gollection process will eventually remove it
when there is no any variable referencing to it any more.

Non-Mutable Variables: Strings

def	 main():	
	 	 s1	 =	 “he”	
	
	 	 s2	 =“llo”	
	
	 	 s1	 =	 s1	 +	 s2

	 	

Memory

s1	 	 h	 	

l	 	
s2	 	

What happens with the first “he”?
The Garbage Collection process will eventually remove it
when there is no any variable referencing to it any more.

e	 	

l	 	 	 	 	 	 	 	 	 	 	

o	 	

h	 	

e	 	

l	 	

l	 	 	 	 	 	 	 	 	 	 	

o	 	

Mutable Variables: Lists

def	 main():	
	 	 x	 =	 [10,20,30]	
	
	 	 x[1]	 =	 x[1]	 +	 10	
	
	 	 x[2]	 =	 x[1]	 +	 10	

Memory

X	 	
10	

30	

20	

[0]	

[1]	

[2]	

Mutable Variables: Lists

def	 main():	
	 	 x	 =	 [10,20,30]	
	
	 	 x[1]	 =	 x[1]	 +	 10	
	
	 	 x[2]	 =	 x[1]	 +	 10	

Memory

X	 	
10	

30	

30	

[0]	

[1]	

[2]	

Mutable Variables: Lists

def	 main():	
	 	 x	 =	 [10,20,30]	
	
	 	 x[1]	 =	 x[1]	 +	 10	
	
	 	 x[2]	 =	 x[1]	 +	 20	

Memory

X	 	
10	

40	

30	

[0]	

[1]	

[2]	

See the difference
•  Values of a list are continuously stored in memory
•  Changes are stored in the same memory location
•  Garbage Collection mechanism does not operate here

How does it affect passing
arguments to functions

•  Mutable Variables:
– Changes done to the variable in the called

function will be reflected in the caller function
•  Non-Mutable

– Changes done to the variable in the called
function will NOT be reflected in the caller
funtion

 Let’s see why

Passing Non-Mutable Variables

def	 test(y):	
	 	 	 y	 =	 y	 +	 5	
	
	
def	 main():	
	 	 x	 =	 5	
	
	 	 test(x)	
	
	 	 print(x)	
	
	

Memory

y	 	

X	 	
5	

10	

Notice:
•  In test() changes to the y variable will be stored

in a new position. The x variable in main will
continue referencing to the number 5.

•  The print (x) statement in main will generate 5.

Passing Non-Mutable Variables

def	 test(x):	
	 	 	 x	 =	 x	 +	 5	
	
	
def	 main():	
	 	 x	 =	 5	
	
	 	 test(x)	
	
	 	 print(x)	
	
	

Memory

X	
of	

test()	 	
	 	
X	
of	

main()	 	
5	

10	

Would it be different if the parameter of test()
is called x instead of y?

NO…print(x) in main()
will generate 5

Passing Mutable Variables

def	 test(x):	
	 	 	 for	 i	 in	 range	 (len(x)):	
	 	 	 	 	 x[i]	 =	 x[i]	 +	 10	
	 	 	 	 	 	 	 	 	 	
def	 main():	
	 	 x	 =	 [10,20,30]	
	
	 	 test(x)	
	
	 	 print(x)	
	
	

Memory
Would it be different if the parameter of test()
is called x instead of y?

10	

20	

[0]	

[1]	

[2]	 30	

X	
of	

main()	 	

X	 	
of	

Test()	 	

Passing Mutable Variables

def	 test(x):	
	 	 	 for	 i	 in	 range	 (len(x)):	
	 	 	 	 	 x[i]	 =	 x[i]	 +	 10	
	 	 	 	 	 	 	 	 	 	
def	 main():	
	 	 x	 =	 [10,20,30]	
	
	 	 test(x)	
	
	 	 print(x)	
	
	

Memory
Would it be different if the parameter of test()
is called x instead of y?

20	

30	

[0]	

[1]	

[2]	 40	

print(x) in main will
generate [20, 30, 40]

X	
of	

main()	 	

X	 	
of	

Test()	 	

Today’s topics

•  Exception Handling (Chapter 7)
•  Chapter 8:

– Loop Structures
– Booleans

Exception Handling

•  Let’s consider a program that solve
quadratic equations? Let’s call it quadratic
solver.

•  What can go wrong at first glance?

This can be negative and
produce an ValueError

What can you do then?

Exception Handling

•  You might use decision structures and
check that the value is non-negative
before using math.sqrt()

Exception Handling

Exception Handling

What is wrong with this mechanism?
•  This is “old-fashion” manner. Programming

languages such as C require this.
•  You can have a program that will need

checking too many special cases… you will
code a lot just to avoid errors

•  There can be many causes of errors… How
to know what to check?

Exception Handling

•  Python includes in its design an Exception
Handling mechanism to solve this limitation

 First:
Do what is specified in <body>

Second:
If any problem crops up,
handle it as specified in
<handler>

Let’s see how to use try…except with the same
example

Exception Handling

The Magic Words: Here we first attempt
and in case of error we print a message

Exception Handling
What is nice with try…except?
•  It can be used to catch any kind of error
•  Besides error caused for using math.sqrt() with a

negative number (ValueError) we have:
–  User fails to type correct inputs (different type of

ValueError)
–  If user types an identifier instead of a number

(NameError)
–  If input is not a valid Python expression

(SyntaxError)
–  If user types a valid Python expression that produces

non-numerical results (TypeError)

Exception Handling
The Magic Words dealing
with several types of errors

Loop Structures

Definite Loop: Indefinite Loop:

for	 i	 in	 range(10):	
	 	 	 	 print(i)	

Example:
i	 =	 0	
While	 i	 <	 10:	
	 	 	 	 print(i)	
	 	 	 	 i	 =	 i	 +	 1	

Example:

Here, it will iterate through a
pre-defined sequence.

Here, it will iterate while
the condition is True.

Note: if i is not incremented it
will loop for ever

Loop Structures

Definite Loop: Indefinite Loop:

Results: Results:

Loop Structures

Let’s define a problem to be able to compare:

Problem: Find the average of series of numbers
entered by the user

Loop Structures
Solution to the problem using for:

Algorithm:

Code:

Output

Here, the value of n is
entered before looping

Loop Structures
Solution to the problem using interactive loop
with while:

Algorithm:

Code:

Output

Condition is validated:
y[0] is the first letter

User decides if there is
another input value

Loop Structures
Solution to the problem using sentinel loop with
while:

Algorithm:

Code:

Output

Here one of the input values
entered by the user is
checked in the condition

Value entered by the user (no
question required)

Loop Structures

•  What if a user makes a mistake when entering
the 98th number to be averaged?

•  Does he have to start over?

•  What if the user write all the values in a file (one
number per line) and just read the file and
compute the average. Let’s see this
implementation with both for and while

What can go wrong with interactive loop and
sentinel loop?

Loop Structures
Solution to the problem using file loops:

List_Numbers.txt

43
71
95
44
14
22
62
99
11
4
.
.
.

File with the numbers to be averaged

Loop Structures
Solution to the problem using file loop with for:

Read name of the file
from user

Remember readlines() reads a file as a list of strings where each
element is a line of the file. In this case just one of the numbers to
be averaged

Loop Structures
Solution to the problem using file loop with while:

Read name of the file
from user

readline() reads next
line of the file as a
string. In this case just
one of the numbers to
be averaged

Loop Structures

•  We could treat each line as a sub-file and apply
any of the algorithms previously seen.

•  How? Using Nested Loops

What would happen if the file contains
several numbers separated by comma in the
same line?

Loop Structures
Solution to the problem using nested loops:

List_Numbers.txt

43,71,67,
95,44,14,22,62,99
11,4,15,48,29,37
55,45,66
.
.
.

File with the numbers to be averaged

Loop Structures
Solution to the problem using nested loops:

Read name of the file
from user

Outer loop: ends when
it finds a empty line

Inner loop: iterate
over every number in
the line

Loop Structures
Other common patterns

Two ways to implement it:

Way 1:

Way 2: Known as Loop and A Half Pay attention to the
new key word “break”

Booleans
Let’s say we want to know if two points
objects are in the same position?

Instead of this:

We do:

One of the boolean
operators. I addition
we will see OR and
NOT

Booleans
Remember, in a previous class we saw the
True Tables of the boolean operators

SUMMARY:
AND: True when both P and Q are True
OR: True when any or both are True. Also you can
 remember that it is False when both P and Q are
 False

Booleans
You can use algebra to remember some
results

SUMMARY:
False = 0
True = 1
AND = * (Multiplication)
OR = + (Addition)
a = our boolean variable

Booleans
How the conversion of values is evaluated?

The while() statement
includes an implicit cast
boolean() to any
specified condition

41

Thank you!

