
1

CS 17700
Functions

Week 5

Functions
• Previously, we have used function: range, eval,

sqrt, etc.
• Functions allow grouping statements together

under a (function name) that can be executed
by calling the function

• Functions are a collection of instructions that
perform a task as:
o Printing your name and course
o Calculating the average of a set of numbers
o Editing a picture or video

2

Functions

• Like in algebra, a function is a kind of
“box” into which you put one value and
out comes another. We represent
(“denote”) a function by a name (in math
we use f or F).

F
outputInput

3

Why to use a function?

• If we define a function to perform a task, then we will
write it once but we can use it (or call it) many times.

• Functions can make a program easier to read and
debug.

• Functions can make a program shorter as their use can
eliminate repetitive code.

• Functions allow that future changes need to be only
made in one place.

• Dividing a program into functions allows one to debug
parts one at a time.

• Well-designed functions are often useful in other
programs and can allow the reuse of code.

4

How to write functions?

def functionName():
statement #1
statement #2
…

• Indentation is very important in Python, it marks the beginning
of function body

• Python will give errors if your function is not properly indented

It is a programming practice to define a function that is called main
to call the other functions in our program

5

Example

Note: 1. Don’t forget the colon(:)

2. Align the statements in one function

def SayHello():
print(“Hello world!”)

print(“--From Python”)

SayHello()

6

Functions: Arguments

� A function may or may not receive one or more
argument

7

def Greet():
print("Hello Jack")

def main():
Greet()

def GreetWithArg(message):
print(message)

def main():
msg = “Hello Jack”
GreetWithArg(msg)

No Argument
One Argument

Functions: Arguments

� A function argument can be:
1. A value

2. Expression
3. A variable

8

def Sum(a, b):
total = a + b
print(total)

def main():
x = 5
y = 10
Sum(4, 10)
Sum(x+2, y-3)
Sum(x,y)

Arguments are values

Arguments are expressions

Arguments are variables

Function: Arguments
� On function call, Python assigns the value of the

argument to the variable declared in function

� When the argument passed to a function is the value of a
variable, the name of that variable is irrelevant to the
function

9

def Sum(a, b):
total = a + b
print(total)

def main():
x = 5
y = 10
Sum(x, y)

105a b

• The value of x and y were put into
a and b respectively via function call.

• x and y are called: local variables to
function main

• a and b are called: local variables to
function Sum

Function: Arguments
� The name of argument passed to functions may or

may not match the name of the variable used in the
function

10

def Sum(a, b):
total = a + b
print(total)

def main():
a = 5
b = 10
Sum(a, b)

105

a: local variable to Sum

b

• The value of a and b that are local to
function main were put into the local
variables a and b respectively
via function call.

b: local variable to Sum

a

Functions: Returned Values

� Functions may return values (example: the result of a
computation).

� Returned values can be :
1. Printed
2. Used in assignment statement
3. Used in expression

11

def Average(a, b):
return (a+b)/2

def main():
print (Average(10,2))
avg = Average(3, 4)
Total = Average(4,3) * 0.95

Functions with Multiple Returned Values

� Functions in Python may return multiple values

def getabc():
a = "Hello"
b = "World"
c = "!"
return a,b,c

def main():
s1, s2, s3 = getabc()

12

Example
def Sum(a, b, c):

return (a+b+c)

def Greet(name, GPA):
print("Hello", name)
print("You have a GPA of ", GPA)

def Div(a, b):
return a/b

def Mul(a, b):
return a*b

def main()
x = 3
y = 4
z = 2
myStr = “Mike”
Total = Sum(x,y,z)
print (Greet(myStr))
Result = Sum(x,y,z)+ Mul(x,y) – Div(y, z) 13

Functions that Modify Variables (1)

� What is the output of the following program:

14

def Bonus(grade):
grade = grade + 10

def main():
myGrade = 75
print (myGrade)
Bonus(myGrade)
print (myGrade)

main()

Output: 75
75

Why?

� myGrade is an argument passed to function Bonus.

� myGrade is a numeric data type, also called immutable,
that is a function cannot modify its value. In this case,
only the value of myGrade matters.

� The function call will put the value of myGrade into
grade

� grade is only known ‘locally’ to the function Bonus

� If you want to export the value from function Bonus back
to main, function Bonus MUST use a return statement

� Then you can use the function call in an assignment
statement

15

Functions that Modify Variables (1)

16

Bonus function now returns a value

def Bonus(grade):
grade = grade + 10
return grade

def main():
myGrade = 75
print(myGrade)
myGrade = Bonus (myGrade)
print(myGrade)

main()

Output: 75
85

Functions that Modify Variables (2)

� What is the output of the following program:

17

def Bonus(gradeList):
for i in range(len(gradeList)):

gradeList[i] = gradeList[i] +
10

def main():
myGrades = [75, 90,80]
print (myGrades)
Bonus(myGrades)
print (myGrades)

main()

Output: [75, 90, 80]
[85, 100, 90]

Why?

Functions that Modify
Variables (2)

18

� myGrades is an argument passed to function
Bonus.

� myGrades is list, in Python, lists are mutable, that is
a function can modify its value.

� gradesList is only known ‘locally’ to the function
Bonus.

� The function call will work on the actual contents of
myGrades under the name gradesList

Functions with more than
one return statement

19

def Bonus(grade):
grade = grade + 10
return grade
grade = grade + 10
return grade

def main():
myGrade = 75
print(myGrade)
myGrade = Bonus (myGrade)
print(myGrade)

main()

Output: 75
85

A function call terminates once
a return statement is
encountered.

What can go wrong?

• If your parrot is dead, consider this:
o Did you use the exact same names (case, spelling)?
o All the lines in the block must be indented,

and indented the same amount.
o Variables in the command area don’t exist in your functions,

and variables in your functions don’t exist in the command
area.

o The computer can’t read your mind.
§ It will only do exactly what you tell it to do.
§ In fact, programs always “work,” but maybe not how you

intended!

20

split() function
� str.split([delimiter]): Return a list of the words in the

string, using delimiter as the dlimiter string, i.e.
‘1<>2<>3’.split(‘<>’) returns [‘1’, ‘2’, ‘3’]

� If delimiter is not specified or is None, whitespace
will be considered as delimiter, i.e. ‘ 1 2 3’.split()
returns [‘1’, ‘2’, ‘3’]

21

What is ASCII ?
� ASCII (American Standard Code for Information

Interchange) is the most common format for text
files in computers and on the Internet. In an ASCII
file, each alphabetic, numeric, or special character is
represented with a 7-bit binary number (a string of
seven 0s or 1s). 128 possible characters are
defined.

22

ord() function
� Some times it is require to convert a string to ASCII

value and ord(‘single-char’) inbuilt function will give
python this capability.

23

Example

24

string='Hello World'
for i in string:

print(ord(i))

chr() function
� Some times it requires to convert an ASCII value to

its corresponding character and chr(ASCII value) in-
built function will give python this capability.

25

Example

26

list_ascii=[72, 101, 108, 108, 111, 32, 87, 111, 114,
108, 100]

for i in list_ascii:

print(chr(i))

Output of previous example

27

Other String functions
� s.capitalize() – Copy of s with only the first character

capitalized

� s.title() – Copy of s; first character of each word
capitalized

� s.center(width) – Center s in a field of given width

� s.count(sub) – Count the number of occurrences of
sub in s

� s.find(sub) – Find the first position where sub occurs
in s

28

Other String functions(con’t)
� s.join(list) – Concatenate list of strings into one large

string using s as separator

� s.ljust(width) – Like center, but s is left-justified

� s.lower() – Copy of s in all lowercase letters

� s.lstrip() – Copy of s with leading whitespace
removed

� s.replace(oldsub, newsub) – Replace occurrences of
oldsub in s with newsub

29

Other String functions(con’t)
� s.rfind(sub) – Like find, but returns the right-most

position

� s.rjust(width) – Like center, but s is right-justified

� s.rstrip() – Copy of s with trailing whitespace
removed

� s.split() – Split s into a list of substrings

� s.upper() – Copy of s; all characters converted to
uppercase

30

QUESTIONS???

