
CS 17700

Logical Operators,

Strings,Lists and File

Week 4

1

Announcements
Project-1 is released. Due date is 9/27/2015 at 23.59 PM

Overview
• Logical Operators and Decision Structures

• Strings

• Lists

• File Operations

Logical Operators

Operator Description Example

== Checks if the two values s are equal or not, if yes then
condition becomes true.

a == b

!= Checks if the two values are equal or not, if values are
not equal condition becomes true

a != b

< Checks if the left value is less than the right value. If yes
then condition is true

a < b

> Checks if the left value is greater than the right value. If
yes then condition is true

a > b

<= Checks if the left value is less than OR equal to right
value. If yes then condition is true.

a <= b

>= Checks if the left value is greater than OR equal to the
right value. If yes then condition is true.

a >= b

3

Booleans
Boolean (logical) expressions:

An expression that can be evaluated as True or False

We use logical expression in everyday language:
If it is sunny today, then I should not need an umbrella.
Here is it sunny today? is a logical expression: its value can be either
True or False

Code-like examples:
Assume x=4 Assume a_string=“abc”
x>3 type(a_string)==int
Result-True Result-False

Examples:
Suppose a=True, b=False
a and b= ?
a and True=?

Suppose x=1, y=1
x > 0 and x <=2 –Result?
y > 0 and y >=3 –Result?

Boolean (AND)

x y x and y

T T T

T F F

F T F

F F F

Examples:-
Suppose a=True, b=False
a or b=?
a or True=?

Suppose x=1
x <= 0 or x > 2
Result?
x > 5 or x < 10
Result?

Booleans (OR)

x y x or y

T T T

T F T

F T T

F F F

Examples:-
Suppose a=True, x=2
not a=?
not (not a)=?
not x > 3=?

DeMorgan’s law:-
not (a or b) == (not a) and (not b)
not (a and b) == (not a) or (not b)

Boolean (NOT)

x not x

T F

F T

Exercise
For what values of x, y, and z does the following

statement evaluate to True?

not (z != 4 and z == 2) and not (y == 0 or x == 3)

A) x = 1, y = 0, z = 2

B) x = 3, y = 10, z = 12

C) x = 2, y = 1, z = 3

D) x = 3, y = 1, z = 4

E) x = 0, y = 0, z = 0

Exercise
For what values of x, y, and z does the following

statement evaluate to True?

not (z != 4 and z == 2) and not (y == 0 or x == 3)

Answer:

Option C: x = 2, y = 1, z = 3

Decision Structures
Why do we need Booleans?

They can be used in decision structures

When used in the decision structure, the subsequent code will be executed
only when the Boolean expression which is evaluated as the condition turns out
to be ‘True’

11

If statement
An if statement takes a logical expression and evaluates it.
If it is True, the statements in the if block are executed
If it is False, they are not executed.
Simple decision examples

Decision Structures

x = 5

if x>1:

print(“print something”)

The string is printed

x = 0

if x>1:

print(“print something”)

Does nothing!

‘if block’

print(“Does it print?”)

Two-way decisions are designated by if, else blocks

If the expression is True the if block is executed, otherwise

the else block is executed

Decision Structures

a = 45

if a < 100:

print(“a is small”)

else:

print(“a is large”)

>>> a is small

a = 153

if a < 100:

print(“a is small”)

else:

print(“a is large”)

>>> a is large

Two-way decision

Decision Structures

a < 100?

“a is small” “a is large”

no yes

Multi-way decision
Decision statements can be nested within one another creating complex

logic

Decision Structures

a = 1.5

if a > 2:

print(“a>2”)

else:

if a > 1:

print(“1<a<=2”)

else:

print(“a<=1”)

>>> 1<a<=2

a = 1.5

if a > 2:

print(“a>2”)

elif a > 1:

print(“1<a<=2”)

else:

print(“a<=1”)

>>> 1<a<=2

Decision Structures
Multi-way decision

16

a >2 ?

“a>2”

no yes

a >1 ?

“1<a<=2”“a<=1”

no yes

What will be printed?
credits=78

GPA=3.5

if credits >= 120 and GPA >=2.0:

print('You are eligible to graduate!')

else:

print('You are not eligible to graduate.')

17

Exercise

What is the output of the following code?

a=-5, b=0

if a>=0 and b>=0:

print (“Both a and b are positive”)

elif a<0 and b>=0:

print (“a is negative, b is positive”)

elif a<0 and b<0:

print (“Both a and b are negative”)

else:

print (“a is positive, b is negative”)

18

Strings

1

9

 Strings are amongst the most popular types in Python.
We can create them simply by enclosing characters in
quotes. Python treats single quotes the same as double
quotes.

 Creating strings is as simple as assigning a value to a
variable. For example:

var1 = ‘Hello World!’

var2 = “Python Programming”

Strings

2

0

Accessing Values in Strings

Python does not support a character type; these are

treated as strings of length one, thus also considered a

substring.

To access substrings, use the square brackets for

slicing along with the index or indices to obtain your

substring

Strings

2

1

 Example:

var1 = ‘Hello World!’

var 2 = “Python Programming”

print(“var1[0] = “, var1[0])

print(“var2[1:5] =“,var2[1:5])

Strings

2

2

 Example:

var1 = ‘Hello World!’

var 2 = “Python Programming”

print(“var1[0] = “, var1[0])

print(“var2[1:5] =“,var2[1:5])

 This produces the output:

H

ytho

Strings

2

3

 Some String functions

 Capitalize() – First letter will be capitalized.

 Endswith() – Determines string or substring ends with

suffix

 Lower() –converts to lower case letters

 Upper() –converts to upper case letters

 Find() –returns the index of a string or a substring

Strings

2

4

print (“hello world”.capitalize())

Hello world

print (“Hello World”.endswith(“Hello”))

False

print (“HeLlO WoRlD”.lower())

hello world

print (“Hello World”.upper())

HELLO WORLD

print (“Hello World”.find(“World”))

6

Strings

2

5

 Escape Sequences

 In strings, a backslash \ character followed by one or
more characters is used to represent any character that
cannot be displayed in a string, such as the following:

 A character that does not appear on a standard
keyboard;

 The single quote or double quote character that is
being used to indicate the start and end of the string;

 The backslash character itself.

Strings

2

6

 Examples

var1 = 'doesn \'t'

>>> print(var1)

doesn 't

Strings

27

 Examples:

var1 = "new \none"

>>> print(var1)

new

one

Lists

28

 Multiple elements are stored consecutively in memory

 Syntax:

[elm0, elm1, elm2, …, elmn]

 Lists can be empty

 []

 Lists elements can be of different types

 [1, 2, ["ABCD", "EFG"], 3, 4]

 Lists can be nested
 [[1,2], 4, [6, 10, [11, 12]], 5]

Lists

29

 Index: provide us a quick mechanism for accessing a

given element that is contained within a list

 The index starts from 0, NOT from 1

[] Notation

30

 a[i] : gives a name to the ith element of a list

 a = “Sally”

a[i] is the i+1 character of Sally

In the example above, a[2] is the character ‘l’

 a = list(range(0, 10))

a[i] is the i+1 number in the range of 0 to 9

In the list above, a[2] is 2

Lists: Examples

31

 a = list(range(0, 10))

 print(a) [0,1,2,3,4,5,6,7,8,9]

 print(a[3]) 3

Lets Make it More Concrete

10

0

1

2

3

4

S

a

a

b

c

32

b[0]

b[1]

b[2]

b[3]

b[4]
c[0]
c[1]

….

a = 10

b = range(0,5)

c = “Sally”

Negative Indexes
 What happens if we use a negative index? Do we get an error?

x = list(range(10))

print(x[-1])

print(x[-10])

print(x[-11])

>>> print(x[-11])

 this will print 9

 this will print 0

 Error!

Traceback (most recent call last):

File "<pyshell#173>", line 1, in <module>

print(x[-11])

IndexError: range object index out of range

 Under the hood:

 If you pass in a negative index, Python adds the length of the
list to the index

16

Lets Make it More Concrete

10

0

1

2

3

4

S

a

a

b

c

34

b[-5]

b[-4]

b[-3]

b[-2]

b[-1]
c[-5]
c[-4]

….

a = 10

b = range(0,5)

c = “Sally”

More Complex Lists

35

 y is an example of a list. Each element is a string:

 as you can see each element can be of different length

 The list elements can also be different types:

y = [“ABCD”, ”BCD”, ”CD”, ”D”]

y = [“ABCD”, [1,2,3] , ”CD”, ”D”]

Indexing into Nested Lists

36

 Suppose we wanted to extract the value 3

y = [“ABCD”, [1,2,3] , ”CD”, ”D”]

y[1][2]

 The first set of [] get the element at position 1 of y. The

second [] selects the element at position 2 of the

element y. This is equiv. to:

z = y[1]

z[2]

Typical mistakes

37

 Undershooting the bounds

 a = “hello” a[-6]

 Overshooting the bounds
 a = “hello” a[5]

 Off by one

 a[0] vs a[1]

 By convention we use 0-based indexing

a=“hello”

print(a[0])

print(a[1])

Assigning to Lists
 The [] syntax not only allows us to retrieve the value of

a given element, it also lets us change the content of

that memory location

 Namely, we can assign to that location

b=list(range(0,5))

b[2] = 100

print(b[2])

b[2] = b[2] – 40

print(b[2])

10

0

1

a

bb[0]

b[1]

b[2]

b[3]

b[4]

2

3
4

38

Assigning to Lists
 The [] syntax not only allows us to retrieve the value of

a given element, it also lets us change the content of

that memory location

 Namely, we can assign to that location

b=list(range(0,5))

b[2] = 100

print(b[2])

b[2] = b[2] – 40

print(b[2])

10

0

1

a

bb[0]

b[1]

b[2]

b[3]

b[4]

100

3
4

39

Assigning to Lists
 The [] syntax not only allows us to retrieve the value of

a given element, it also lets us change the content of

that memory location

 Namely, we can assign to that location

b=list(range(0,5))

b[2] = 100

print(b[2])

b[2] = b[2] – 40

print(b[2])

10

0

1

a

bb[0]

b[1]

b[2]

b[3]

b[4]

60

3
4

40

Operations on Lists

41

 len(): gives you the “length” or number of elements in a

list.

len([0,1,2,3,4,5])

6

 Recall the example of printing each element of a string:

Operations on Lists

42

 append(): append an element at the end of a given list.

c = [1, 2, 3, 4, 5]

c.append(6)

Results in c having an additional element:
[1, 2, 3, 4, 5, 6]

 Just like we can concatenate strings we can concatenate
lists
print ([1, 2, 3] + [4, 5, 6])

 Will print: [1, 2, 3, 4, 5, 6]

 Just like we can slice strings we can also slice lists
b = [1, 2, 3, 4, 5, 6]

print (b[2:5])

 Will print [3, 4, 5]

File Processing
The process of opening a file involves associating a file

on disk with an object in program memory.

We can manipulate the file by manipulating this object.

Read from the file

Write to the file

File Processing
•For reading or writing a file, you need to open the file

initially

• open(filename, access_mode) opens the filename

-Note: if you do not provide a full path the file is assumed to be
in the same directorywhere your program exists. If you are

typing directly into IDLE the file must be where python is
installed. (C:\Python32\)

• access_mode specifies the purpose of opening the file

- “r” means read ONLY

- “w” means write ONLY, overwrites the file if the file exists

Methods on Files
<fileobject>.method() syntax: this time files are our
object

file = open(“myfile”, “w”)

file.read() -- reads the file as one string

file.readline() - read the next line of the file as string

file.readlines() - reads the file as a list of strings
read() and readlines() can only be used once without closing
and reopening the file.

file.write(data) - allows you to write to a file

file.close() - closes a file

Extracting Data

Data in files or web are useful and we are interested in

extracting this information for use in our programs.

Data in files or web are formatted as string data type.

Therefore, we need to apply our knowledge in File I/O,

Strings and Lists in order to extract these information.

Print File Contents
The read() operation:

def main():

myfile = open(“students.txt”, “r”)

content = myfile.read()

print(content)

myfile.close()

students.txt

main()

Print File Contents
The read() operation:

def main():

myfile = open(“students.txt”, “r”)

content = myfile.read()

print(content)

myfile.close()

students.txt

main()

Output:

Print File Contents
The readlines() operation:

def main():

myfile = open(“students.txt”, “r”)

content = myfile.readlines()

print(content)

myfile.close()

students.txt

main()

Print File Contents
The readlines() operation:

def main():

myfile = open(“students.txt”, “r”)

content = myfile.readlines()

print(content)

myfile.close()

students.txt

main()

Output:

Print File Contents
The readline() operation:

def main():

myfile = open(“students.txt”, “r”)

content = myfile.readline()

print(content)

myfile.close()

students.txt

main()

Print File Contents
The readline() operation:

def main():

myfile = open(“students.txt”, “r”)

content = myfile.readline()

print(content)

myfile.close()

students.txt

main()

Output:

findAverage
In this Example, the file students.txt contains the
following data:

Jim 75
Alice 95
Alex 75
…

• We are interested in finding the average

of the class

Finding Average of Grades
1. Open “students.txt” for reading

2. Read the file content into a string using read().

3. Extract grades

4. Calculate the average.

5. Print out the average

Important Note
Data in files are stored as strings. If we are interested in

the numeric value of the data, then we need to convert

string values into numeric using functions: int or float

Example:

>>> x = “150”

>>>xValue = int(x)

>>>y = “159.7895”

>>>yValue= float(y)

More String Manipulation
•str.split(sep)

•Returns a new list of the words in the string, using sep as the delimiter
string

“test1 test2 test3”.split(“ “) ['test1','test2','test3']

str = "Line1\nLine2\nLine3”

print(str.split())

print(str.split('\n’))

print(str.split(‘\n’,1))

Output?

More String Manipulation
•str.split(sep)

•Returns a new list of the words in the string, using sep as the delimiter
string

“test1 test2 test3”.split(“ “) ['test1','test2','test3']

str = "Line1\nLine2\nLine3”

print(str.split())

print(str.split(‘\n’))

print(str.split('\n',1)

Output-

['Line1’, ‘Line2’, ‘Line3’]

[‘Line1’, ‘Line2’, ‘Line3’]

['Line1', 'Line2\nLine3']

findAverage

def findAverage(fileName):
file = open(fileName, "r")
for line in file.readlines():
#do work here!

In each iteration of the for loop, the variable line will contain a

line within the file. Remember in the previous slides that

file.readlines creates a list, having as many elements as the lines

in the file.

findAverage
By observing the list content, we see that each string

contains: name space score

def findAverage(fileName):
file = open(fileName, 'r')
Sum = 0
Count = 0
for line in file.readlines():

sublist = line.split(' ')
Sum = Sum + int(sublist[1])
Count += 1

print (Sum/Count)
file.close()

ANY QUESTIONS?

38

