
CS177 Python Programming

Recitation 11 – Data Collections

Table of Contents

• Review the use of lists (arrays) to represent a
collection of related data.

• Review the functions and methods available
for manipulating Python lists.

• Review the use of other data collections in
Python, such as dictionaries and tuples.

CS17700 Programming With
Multimedia Objects

3

Sequences

• When we have multiple elements stored
consecutively in memory we call it a List

• When we have multiple characters stored
consecutively in memory we call it a String

• Both of these structures are sequence
structured (individual items can be selected
by indexing i.e. s[i]).

• Ranges, Lists and Strings are 0 indexed

CS17700 Programming With
Multimedia Objects

4

Lists

• Lists are defined by []

• Lists can contain strings, numbers, even other
lists.

>>>x = “ABCD”
>>>y = [“A”,”B”,”C”,”D”]
>>>print (x)
ABCD
>>>print (y)
['A', 'B', 'C', 'D']

Print a string
(A string of characters)

Print a list
(A list of characters)

CS17700 Programming With
Multimedia Objects

5

Lists

• Lists are more “general purpose”

– Allow heterogeneous elements in the same list

 >>> myList = ["X", "B", 3, "A", 1]

 >>> print (myList)

 ['X', 'B', 3, 'A', 1]

 >>> myList = [['X', 'B', 3, 'A', 1], ‘hello’, 99]

CS17700 Programming With
Multimedia Objects

6

[] Notation in Lists

• a[i] : gives a name to the ith element of a
sequence

• The [] can be used to index into lists, ranges, or
strings.

• If the sequence is a list, e.g., a = list(range(0, 10))

– a[i] is equal to the i+1 number in the range of 0 to 9

 (index starts from 0)

Lists Operations

Operator Meaning

<seq> + <seq> Concatenation

<seq> * <int-expr> Repetition

<seq>[] Indexing

len(<seq>) Length

<seq>[:] Slicing

for <var> in <seq>: Iteration

<expr> in <seq> Membership (Boolean)

CS17700 Programming With
Multimedia Objects

8

Slicing

>>>x = list(range(0,10))
>>>print (x[0])
0
>>>print (x[0:5])
[0,1,2,3,4]
>>>print (x[:3])
[0,1,2]
>>>print (x[3:])
[3,4,5,6,7,8,9]
>>>print (x[-1:])
[9]
>>>print (x[:-1])
[0,1,2,3,4,5,6,7,8]

Print the first element

Print the first five elements

Print the first three elements
Starting point is omitted, default value is 0

Print from the fourth element until the end
Ending point is omitted

Print from the last element until the end
Ending point is omitted

Print from the first element to the last
Starting point is omitted, default value is 0

Get element!

Get sublist!

Get sublist!

Get sublist!

Get sublist!

Get sublist!

CS17700 Programming With
Multimedia Objects

9

Examples of List Operations

>>> print([1,2] + [3,4])

>>> print([1,2]*3)

>>> grades = ['A', 'B', 'C', 'D', 'F']

>>> print(grades[0])

>>> print(grades[2:4])

>>> print(len(grades))

CS17700 Programming With
Multimedia Objects

10

Examples of List Operations

>>> print([1,2] + [3,4])

[1, 2, 3, 4]

>>> print([1,2]*3)

[1, 2, 1, 2, 1, 2]

>>> grades = ['A', 'B', 'C', 'D', 'F']

>>> print(grades[0])

'A'

>>> print(grades[2:4])

['C', 'D']

>>> print(len(grades))

5

Lists Operations (con’t)

Method Meaning

<list>.append(x) Add element x to end of list.

<list>.sort() Sort (order) the list. A comparison function may be passed as a
parameter.

<list>.reverse() Reverse the list.

<list>.index(x) Returns index of first occurrence of x.

<list>.insert(i, x) Insert x into list at index i.

<list>.count(x) Returns the number of occurrences of x in list.

<list>.remove(x) Deletes the first occurrence of x in list.

<list>.pop(i) Deletes the ith element of the list and returns its value.

CS17700 Programming With
Multimedia Objects

12

Examples of List Operations

>>> a=[]

>>> for i in range(15, 3, -2):

 a.append(i)

>>> print(a)

>>> print(a.reverse())

>>> print(a.index(7))

CS17700 Programming With
Multimedia Objects

13

Examples of List Operations

>>> a=[]

>>> for i in range(15, 3, -2):

 a.append(i)

>>> print(a)

[15, 13, 11, 9, 7, 5]

>>> print(a.reverse())

[5, 7, 9, 11, 13, 15]

>>> print(a.index(7))

1

CS17700 Programming With
Multimedia Objects

14

Examples of List Operations

>>> a.insert(2, 15)

>>> print(a)

>>> print(a.count(15))

>>> a.remove(15)

>>> print(a)

>>> print(a.pop(2))

CS17700 Programming With
Multimedia Objects

15

Examples of List Operations

>>> a.insert(2, 15)

>>> print(a)

[5, 7, 15, 9, 11, 13, 15]

>>> print(a.count(15))

2

>>> a.remove(15)

>>> print(a)

[5, 7, 9, 11, 13, 15]

>>> print(a.pop(2))

9

Dictionaries, Sets, Tuples

• A collection of unordered values accessed by
key rather than by index is called Dictionary

• A collection of unordered and non-duplicated
elements is called Sets

• In Python a Tuple is much like a list except that it
is immutable (unchangeable) once created, i.e.
(42, 56, 7)

• Note: Being an unordered collection, dic/sets do
not record element position or order of
insertion. Accordingly, indexing, slicing, or other
sequence-like behavior are not supported.

Strings, Lists, Dictionaries, Sets, Tuples

Data Type Description

List
Sequential, ordered, can have duplicates, mutable,
i.e. [‘h’, ‘e’, ‘l’, ‘l’, ‘o’]

String
Sequential, ordered, can have duplicates,
immutable, i.e. “hello”

Dictionary
Non-sequential, non-ordered, unique keys, can
have duplicates, mutable, i.e. {1:‘h’, 2:‘e’, 3:‘l’, 4:‘l’,
5:‘o’}

Set
Non-sequential, non-ordered, non-duplicate,
mutable, i.e. setset(('h','e', 'l', 'o'))

Tuple
Sequential, ordered, can have duplicates,
immutable, i.e. tuple(('h','e', 'l', 'l', 'o'))

Dictionary Methods

• A dictionary is an unordered set of key: value pairs

• len(d)

Return the number of items in the dictionary d.

• d[key]

Return the item of d with key key.

Raises a KeyError if key is not in the map.

• d[key] = value

Set d[key] to value.

https://docs.python.org/2/library/exceptions.html

Dictionaries Methods

•del d[key]

Remove d[key] from d.

Raises a KeyError if key is not in the map.

•key in d

Return True if d has a key key, else False.

https://docs.python.org/2/library/exceptions.html

>>> d = {} #empty dictionary

>>> d = {‘date’ : 18}

#set ‘date’ maps to 18

>>> d[‘date’] = 20

#change the value mapped to by the key ‘date’
to 20

Example

Example

Is this right??

If yes, what is the output?

If no, why?

>>> d = {'alice' : 1, 'bob' : 2, 'calie': 1}

>>> d = {'alice' : 1, 'bob' : 2, 'alice': 3}

Example

Given a dictionary dic and a list lst, remove all
elements from the dictionary whose key is an
element of lst. For example, given the
dictionary {1:2, 3:4, 5:6, 7:8} and the list [1, 7],
the resulting dictionary would be {3:4, 5:6}.
Assume every element of the list is a key in the
dictionary.

Example

Given a dictionary dic and a list lst, remove all
elements from the dictionary whose key is an
element of lst. For example, given the
dictionary {1:2, 3:4, 5:6, 7:8} and the list [1, 7],
the resulting dictionary would be {3:4, 5:6}.
Assume every element of the list is a key in the
dictionary.

for e in lst :

 del dic[e]

Sets Methods

• S.update(t)
Return set S with element added from t

• S.add(x)

Add element x to set S

• S.remove(x)

Remove x from set S, raises KeyError if not
present

>>> engineers = set(['John', 'Jane', 'Jack',
'Janice'])

>>> engineers.add('Marvin')

>>> employees = set()

>>> employees.update(engineers)

>>> employees.remove('Jack')

Example

>>> engineers = set(['John', 'Jane', 'Jack', 'Janice'])

>>> engineers.add('Marvin')

{'Jack', 'Marvin', 'Janice', 'John', 'Jane'}

>>> employees = set()

>>> employees.update(engineers)

{'John', 'Jane', 'Janice', 'Jack', 'Marvin'}

>>> employees.remove('Jack')

{'John', 'Jane', 'Janice', 'Marvin‘}

Example

Examples

Given the string line , create a set of all the
vowels in line. Associate the set with
the variable vowels.

Examples

Given the string line , create a set of all the
vowels in line. Associate the set with
the variable vowels.

vowels = set()

for x in line:

 if x=="a" or x=="e" or x=="i" or x=="o" or x=="u":

 vowels.add(x)

Tuples

>>> t = (12345, 54321, 'hello!')

>>> print (t)

(12345, 54321, 'hello!')

>>> # Tuples may be nested: ...

>>> u = (t, (1, 2, 3, 4, 5))

>>> print(u)

((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))

Examples

>>> # Tuples are immutable: ...

>>> t[0] = 88888

Traceback (most recent call last): File "<stdin>", line
1, in <module> TypeError: 'tuple' object does not
support item assignment

>>> # but they can contain mutable objects: ... v =
([1, 2, 3], [3, 2, 1])

>>> v[1][2] = 99

>>>print(v)

([1, 2, 3], [3, 2, 99])

Examples

Given that t has been defined and refers to
a tuple write some statements that
associate with t a new tuple containing the
same elements as the original but in sorted
order.

Examples

Given that t has been defined and refers to
a tuple write some statements that
associate with t a new tuple containing the
same elements as the original but in sorted
order.
tmp = list(t)
tmp.sort()
t = tuple(tmp)

