
Python Programming, 2/e 1

Python Programming:
An Introduction to
Computer Science

Chapter 3

Computing with Numbers

Python Programming, 2/e 2

Objectives

� To understand the concept of data
types.

� To be familiar with the basic numeric
data types in Python.

� To understand the fundamental
principles of how numbers are
represented on a computer.

Python Programming, 2/e 3

Objectives (cont.)

� To be able to use the Python math
library.

� To understand the accumulator program
pattern.

� To be able to read and write programs
that process numerical data.

Python Programming, 2/e 4

Numeric Data Types

� The information that is stored and
manipulated by computers programs is
referred to as data.

� There are two different kinds of
numbers!

� (5, 4, 3, 6) are whole numbers – they don’t

have a fractional part

� (.25, .10, .05, .01) are decimal fractions

Python Programming, 2/e 5

Numeric Data Types

� Inside the computer, whole numbers and
decimal fractions are represented quite
differently!

� We say that decimal fractions and whole
numbers are two different data types.

� The data type of an object determines
what values it can have and what
operations can be performed on it.

Python Programming, 2/e 6

Numeric Data Types

� Whole numbers are represented using
the integer (int for short) data type.

� These values can be positive or
negative whole numbers.

Python Programming, 2/e 7

Numeric Data Types

� Numbers that can have fractional parts
are represented as floating point (or
float) values.

� How can we tell which is which?
� A numeric literal without a decimal point
produces an int value

� A literal that has a decimal point is
represented by a float (even if the
fractional part is 0)

Python Programming, 2/e 8

Numeric Data Types

� Python has a special function to tell us the
data type of any value.

>>> type(3)

<class 'int'>

>>> type(3.1)

<class 'float'>

>>> type(3.0)

<class 'float'>

>>> myInt = 32

>>> type(myInt)

<class 'int'>

>>>

Python Programming, 2/e 9

Numeric Data Types

� Why do we need two number types?

� Values that represent counts can’t be fractional
(you can’t have 3 ½ quarters)

� Most mathematical algorithms are very efficient
with integers

� The float type stores only an approximation to the
real number being represented!

� Since floats aren’t exact, use an int whenever

possible!

Python Programming, 2/e 10

Numeric Data Types

� Operations on ints produce ints, operations
on floats produce floats (except for /).

>>> 3.0+4.0

7.0

>>> 3+4

7

>>> 3.0*4.0

12.0

>>> 3*4

12

>>> 10.0/3.0

3.3333333333333335

>>> 10/3

3.3333333333333335

>>> 10 // 3

3

>>> 10.0 // 3.0

3.0

Python Programming, 2/e 11

Numeric Data Types

� Integer division produces a whole
number.

� That’s why 10//3 = 3!

� Think of it as ‘gozinta’, where 10//3 = 3
since 3 gozinta (goes into) 10 3 times
(with a remainder of 1)

� 10%3 = 1 is the remainder of the
integer division of 10 by 3.

� a = (a/b)*(b) + (a%b)

Python Programming, 2/e 12

Using the Math Library

� Besides (+, -, *, /, //, **, %, abs), we
have lots of other math functions
available in a math library.

� A library is a module with some useful
definitions/functions.

Python Programming, 2/e 13

Using the Math Library

� Let’s write a program to compute the

roots of a quadratic equation!

� The only part of this we don’t know
how to do is find a square root… but
it’s in the math library!

2
4

2

b b ac
x

a

− ± −
=

Python Programming, 2/e 14

Using the Math Library

� To use a library, we need to make sure
this line is in our program:
import math

� Importing a library makes whatever
functions are defined within it available
to the program.

Python Programming, 2/e 15

Using the Math Library

� To access the sqrt library routine, we
need to access it as math.sqrt(x).

� Using this dot notation tells Python to
use the sqrt function found in the math
library module.

� To calculate the root, you can do
discRoot = math.sqrt(b*b – 4*a*c)

Python Programming, 2/e 16

Using the Math Library
quadratic.py

A program that computes the real roots of a quadratic equation.

Illustrates use of the math library.

Note: This program crashes if the equation has no real roots.

import math # Makes the math library available.

def main():

print("This program finds the real solutions to a quadratic")

print()

a, b, c = eval(input("Please enter the coefficients (a, b, c): "))

discRoot = math.sqrt(b * b - 4 * a * c)

root1 = (-b + discRoot) / (2 * a)

root2 = (-b - discRoot) / (2 * a)

print()

print("The solutions are:", root1, root2)

main()

Python Programming, 2/e 17

Using the Math Library
This program finds the real solutions to a quadratic

Please enter the coefficients (a, b, c): 3, 4, -1

The solutions are: 0.215250437022 -1.54858377035

� What do you suppose this means?
This program finds the real solutions to a quadratic

Please enter the coefficients (a, b, c): 1, 2, 3

Traceback (most recent call last):

File "<pyshell#26>", line 1, in -toplevel-

main()

File "C:\Documents and Settings\Terry\My Documents\Teaching\W04\CS
120\Textbook\code\chapter3\quadratic.py", line 14, in main

discRoot = math.sqrt(b * b - 4 * a * c)

ValueError: math domain error

>>>

Python Programming, 2/e 18

Math Library

� If a = 1, b = 2, c = 3, then we are
trying to take the square root of a
negative number!

� Using the sqrt function is more efficient
than using **. How could you use ** to
calculate a square root?

Python Programming, 2/e 19

Accumulating Results:
Factorial

� Say you are waiting in a line with five
other people. How many ways are there
to arrange the six people?

� 720 -- 720 is the factorial of 6
(abbreviated 6!)

� Factorial is defined as:
n! = n(n-1)(n-2)…(1)

� So, 6! = 6*5*4*3*2*1 = 720

Python Programming, 2/e 20

Accumulating Results:
Factorial

� How we could we write a program to do
this?

� Input number to take factorial of, n
Compute factorial of n, fact
Output fact

Python Programming, 2/e 21

Accumulating Results:
Factorial

� How did we calculate 6!?

� 6*5 = 30

� Take that 30, and 30 * 4 = 120

� Take that 120, and 120 * 3 = 360

� Take that 360, and 360 * 2 = 720

� Take that 720, and 720 * 1 = 720

Python Programming, 2/e 22

Accumulating Results:
Factorial

� What’s really going on?

� We’re doing repeated multiplications, and
we’re keeping track of the running product.

� This algorithm is known as an accumulator,
because we’re building up or accumulating

the answer in a variable, known as the
accumulator variable.

Python Programming, 2/e 23

Accumulating Results:
Factorial

� The general form of an accumulator
algorithm looks like this:

Initialize the accumulator variable

Loop until final result is reached
update the value of accumulator
variable

Python Programming, 2/e 24

Accumulating Results:
Factorial

� It looks like we’ll need a loop!

fact = 1

for factor in [6, 5, 4, 3, 2, 1]:
fact = fact * factor

� Let’s trace through it to verify that this

works!

Python Programming, 2/e 25

Accumulating Results:
Factorial

� Why did we need to initialize fact to 1?
There are a couple reasons…
� Each time through the loop, the previous
value of fact is used to calculate the next
value of fact. By doing the initialization,
you know fact will have a value the first
time through.

� If you use fact without assigning it a value,
what does Python do?

Python Programming, 2/e 26

Accumulating Results:
Factorial

� Since multiplication is associative and
commutative, we can rewrite our
program as:

fact = 1

for factor in [2, 3, 4, 5, 6]:
fact = fact * factor

� Great! But what if we want to find the
factorial of some other number??

Python Programming, 2/e 27

Accumulating Results:
Factorial

� What does range(n) return?
0, 1, 2, 3, …, n-1

� range has another optional parameter!
range(start, n) returns
start, start + 1, …, n-1

� But wait! There’s more!
range(start, n, step)
start, start+step, …, n-1

� list(<sequence>) to make a list

Python Programming, 2/e 28

Accumulating Results:
Factorial

� Let’s try some examples!
>>> list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(range(5,10))

[5, 6, 7, 8, 9]

>>> list(range(5,10,2))

[5, 7, 9]

Python Programming, 2/e 29

Accumulating Results:
Factorial

� Using this souped-up range statement,
we can do the range for our loop a
couple different ways.

� We can count up from 2 to n:
range(2, n+1)
(Why did we have to use n+1?)

� We can count down from n to 2:
range(n, 1, -1)

Python Programming, 2/e 30

Accumulating Results:
Factorial

� Our completed factorial program:
factorial.py

Program to compute the factorial of a number

Illustrates for loop with an accumulator

def main():

n = eval(input("Please enter a whole number: "))

fact = 1

for factor in range(n,1,-1):

fact = fact * factor

print("The factorial of", n, "is", fact)

main()

Python Programming, 2/e 31

The Limits of Int

� What is 100!?
>>> main()

Please enter a whole number: 100

The factorial of 100 is
9332621544394415268169923885626670049071596826438162
1468592963895217599993229915608941463976156518286253
6979208272237582511852109168640000000000000000000000
00

� Wow! That’s a pretty big number!

Python Programming, 2/e 32

The Limits of Int

� Newer versions of Python can handle it, but…
Python 1.5.2 (#0, Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)] on win32

Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam

>>> import fact

>>> fact.main()

Please enter a whole number: 13

13

12

11

10

9

8

7

6

5

4

Traceback (innermost last):

File "<pyshell#1>", line 1, in ?

fact.main()

File "C:\PROGRA~1\PYTHON~1.2\fact.py", line 5, in main

fact=fact*factor

OverflowError: integer multiplication

Python Programming, 2/e 33

The Limits of Int

� What’s going on?

� While there are an infinite number of
integers, there is a finite range of ints that
can be represented.

� This range depends on the number of bits
a particular CPU uses to represent an
integer value. Typical PCs use 32 bits.

Python Programming, 2/e 34

The Limits of Int

� Typical PCs use 32 bits

� That means there are 232 possible
values, centered at 0.

� This range then is –231 to 231-1. We
need to subtract one from the top end
to account for 0.

� But our 100! is much larger than this.
How does it work?

Python Programming, 2/e 35

Handling Large Numbers

� Does switching to float data types get
us around the limitations of ints?

� If we initialize the accumulator to 1.0,
we get

>>> main()

Please enter a whole number: 15

The factorial of 15 is 1.307674368e+012

� We no longer get an exact answer!

Python Programming, 2/e 36

Handling Large Numbers:
Long Int

� Very large and very small numbers are
expressed in scientific or exponential
notation.

� 1.307674368e+012 means 1.307674368 *
1012

� Here the decimal needs to be moved right 12
decimal places to get the original number, but
there are only 9 digits, so 3 digits of precision
have been lost.

Python Programming, 2/e 37

Handling Large Numbers

� Floats are approximations

� Floats allow us to represent a larger
range of values, but with lower
precision.

� Python has a solution, expanding ints!

� Python Ints are not a fixed size and
expand to handle whatever value it
holds.

Python Programming, 2/e 38

Handling Large Numbers

� Newer versions of Python automatically
convert your ints to expanded form when
they grow so large as to overflow.

� We get indefinitely large values (e.g. 100!) at
the cost of speed and memory

Python Programming, 2/e 39

Type Conversions

� We know that combining an int with an
int produces an int, and combining a
float with a float produces a float.

� What happens when you mix an int and
float in an expression?
x = 5.0 + 2

� What do you think should happen?

Python Programming, 2/e 40

Type Conversions

� For Python to evaluate this expression,
it must either convert 5.0 to 5 and do
an integer addition, or convert 2 to 2.0
and do a floating point addition.

� Converting a float to an int will lose
information

� Ints can be converted to floats by
adding “.0”

Python Programming, 2/e 41

Type Conversion

� In mixed-typed expressions Python will
convert ints to floats.

� Sometimes we want to control the type
conversion. This is called explicit typing.

Python Programming, 2/e 42

Type Conversions
>>> float(22//5)

4.0

>>> int(4.5)

4

>>> int(3.9)

3

>>> round(3.9)

4

>>> round(3)

3

