
Python Programming, 2/e 1

Python Programming:
An Introduction to
Computer Science

Chapter 2

Python Programming, 2/e 2

Objectives

� To be able to understand and write
Python statements to output
information to the screen, assign values
to variables, get numeric information
entered from the keyboard, and
perform a counted loop

Python Programming, 2/e 3

The Software Development
Process

� The process of creating a program is
often broken down into stages
according to the information that is
produced in each phase.

Python Programming, 2/e 4

The Software Development
Process

� Analyze the Problem
Figure out exactly the problem to be
solved. Try to understand it as much as
possible.

Python Programming, 2/e 5

The Software Development
Process

� Determine Specifications
Describe exactly what your program will
do.

� Don’t worry about how the program will
work, but what it will do.

� Includes describing the inputs, outputs,
and how they relate to one another.

Python Programming, 2/e 6

The Software Development
Process

� Create a Design

� Formulate the overall structure of the
program.

� This is where the how of the program gets
worked out.

� You choose or develop your own algorithm
that meets the specifications.

Python Programming, 2/e 7

The Software Development
Process

� Implement the Design

� Translate the design into a computer
language.

� In this course we will use Python.

Python Programming, 2/e 8

The Software Development
Process

� Test/Debug the Program

� Try out your program to see if it worked.

� If there are any errors (bugs), they need to
be located and fixed. This process is called
debugging.

� Your goal is to find errors, so try
everything that might “break” your

program!

Python Programming, 2/e 9

The Software Development
Process

� Maintain the Program

� Continue developing the program in
response to the needs of your users.

� In the real world, most programs are never
completely finished – they evolve over

time.

Python Programming, 2/e 10

Example Program:
Temperature Converter

� Analysis – the temperature is given in

Celsius, user wants it expressed in
degrees Fahrenheit.

� Specification

� Input – temperature in Celsius

� Output – temperature in Fahrenheit

� Output = 9/5(input) + 32

Python Programming, 2/e 11

Example Program:
Temperature Converter

� Design

� Input, Process, Output (IPO)

� Prompt the user for input (Celsius
temperature)

� Process it to convert it to Fahrenheit using
F = 9/5(C) + 32

� Output the result by displaying it on the
screen

Python Programming, 2/e 12

Example Program:
Temperature Converter

� Before we start coding, let’s write a
rough draft of the program in
pseudocode

� Pseudocode is precise English that
describes what a program does, step by
step.

� Using pseudocode, we can concentrate
on the algorithm rather than the
programming language.

Python Programming, 2/e 13

Example Program:
Temperature Converter

� Pseudocode:

� Input the temperature in degrees Celsius
(call it celsius)

� Calculate fahrenheit as (9/5)*celsius+32

� Output fahrenheit

� Now we need to convert this to Python!

Python Programming, 2/e 14

Example Program:
Temperature Converter

#convert.py

A program to convert Celsius temps to Fahrenheit

by: Susan Computewell

def main():

celsius = eval(input("What is the Celsius temperature? "))

fahrenheit = (9/5) * celsius + 32

print("The temperature is ",fahrenheit," degrees Fahrenheit.")

main()

Python Programming, 2/e 15

Example Program:
Temperature Converter

� Once we write a program, we should
test it!

>>>

What is the Celsius temperature? 0

The temperature is 32.0 degrees Fahrenheit.

>>> main()

What is the Celsius temperature? 100

The temperature is 212.0 degrees Fahrenheit.

>>> main()

What is the Celsius temperature? -40

The temperature is -40.0 degrees Fahrenheit.

>>>

Python Programming, 2/e 16

Elements of Programs

� Names

� Names are given to variables (celsius,
fahrenheit), modules (main, convert), etc.

� These names are called identifiers

� Every identifier must begin with a letter or
underscore (“_”), followed by any

sequence of letters, digits, or underscores.

� Identifiers are case sensitive.

Python Programming, 2/e 17

Elements of Programs

� These are all different, valid names

� X

� Celsius

� Spam

� spam

� spAm

� Spam_and_Eggs

� Spam_And_Eggs

Python Programming, 2/e 18

Elements of Programs

� Some identifiers are part of Python itself.
These identifiers are known as reserved
words. This means they are not available
for you to use as a name for a variable,
etc. in your program.

� and, del, for, is, raise, assert, elif, in, print,
etc.

� For a complete list, see table 2.1

Python Programming, 2/e 19

Elements of Programs

� Expressions

� The fragments of code that produce or
calculate new data values are called
expressions.

� Literals are used to represent a specific
value, e.g. 3.9, 1, 1.0

� Simple identifiers can also be expressions.

Python Programming, 2/e 20

Elements of Programs
>>> x = 5

>>> x

5

>>> print(x)

5

>>> print(spam)

Traceback (most recent call last):

File "<pyshell#15>", line 1, in -toplevel-

print spam

NameError: name 'spam' is not defined

>>>

� NameError is the error when you try to use a
variable without a value assigned to it.

Python Programming, 2/e 21

Elements of Programs

� Simpler expressions can be combined using
operators.

� +, -, *, /, **

� Spaces are irrelevant within an expression.

� The normal mathematical precedence
applies.

� ((x1 – x2) / 2*n) + (spam / k**3)

Python Programming, 2/e 22

Elements of Programs

� Output Statements

� A print statement can print any number of
expressions.

� Successive print statements will display on
separate lines.

� A bare print will print a blank line.

Python Programming, 2/e 23

Elements of Programs

print(3+4)

print(3, 4, 3+4)

print()

print(3, 4, end=" "),

print(3 + 4)

print("The answer is", 3+4)

7

3 4 7

3 4 7

The answer is 7

Python Programming, 2/e 24

Assignment Statements

� Simple Assignment

� <variable> = <expr>
variable is an identifier, expr is an
expression

� The expression on the RHS is evaluated
to produce a value which is then
associated with the variable named on
the LHS.

Python Programming, 2/e 25

Assignment Statements

� x = 3.9 * x * (1-x)

� fahrenheit = 9/5 * celsius + 32

� x = 5

Python Programming, 2/e 26

Assignment Statements

� Variables can be reassigned as many
times as you want!
>>> myVar = 0

>>> myVar

0

>>> myVar = 7

>>> myVar

7

>>> myVar = myVar + 1

>>> myVar

8

>>>

Python Programming, 2/e 27

Assignment Statements

� Variables are like a box we can put
values in.

� When a variable changes, the old value
is erased and a new one is written in.

Python Programming, 2/e 28

Assignment Statements

� Technically, this model of assignment is
simplistic for Python.

� Python doesn't overwrite these memory
locations (boxes).

� Assigning a variable is more like putting
a “sticky note” on a value and saying,
“this is x”.

Python Programming, 2/e 29

Assigning Input

� The purpose of an input statement is to
get input from the user and store it into
a variable.

� <variable> = eval(input(<prompt>))

Python Programming, 2/e 30

Assigning Input

� First the prompt is printed

� The input part waits for the user to enter a
value and press <enter>

� The expression that was entered is
evaluated to turn it from a string of
characters into a Python value (a number).

� The value is assigned to the variable.

Python Programming, 2/e 31

Simultaneous Assignment

� Several values can be calculated at the
same time

� <var>, <var>, … = <expr>, <expr>,
…

� Evaluate the expressions in the RHS
and assign them to the variables on the
LHS

Python Programming, 2/e 32

Simultaneous Assignment

� sum, diff = x+y, x-y

� How could you use this to swap the
values for x and y?

� Why doesn’t this work?

x = y
y = x

� We could use a temporary variable…

Python Programming, 2/e 33

Simultaneous Assignment

� We can swap the values of two
variables quite easily in Python!

� x, y = y, x
>>> x = 3

>>> y = 4

>>> print x, y

3 4

>>> x, y = y, x

>>> print x, y

4 3

Python Programming, 2/e 34

Simultaneous Assignment

� We can use this same idea to input
multiple variables from a single input
statement!

� Use commas to separate the inputs
def spamneggs():
spam, eggs = eval(input("Enter # of slices of spam followed by # of eggs: "))
print ("You ordered", eggs, "eggs and", spam, "slices of spam. Yum!“)

>>> spamneggs()
Enter the number of slices of spam followed by the number of eggs: 3, 2
You ordered 2 eggs and 3 slices of spam. Yum!
>>>

Python Programming, 2/e 35

Definite Loops

� A definite loop executes a definite
number of times, i.e., at the time
Python starts the loop it knows exactly
how many iterations to do.

� for <var> in <sequence>:
<body>

� The beginning and end of the body are
indicated by indentation.

Python Programming, 2/e 36

Definite Loops

for <var> in <sequence>:
<body>

� The variable after the for is called the
loop index. It takes on each successive
value in sequence.

Python Programming, 2/e 37

Definite Loops
>>> for i in [0,1,2,3]:

print (i)

0

1

2

3

>>> for odd in [1, 3, 5, 7]:

print(odd*odd)

1

9

25

49

>>>

Python Programming, 2/e 38

Definite Loops

� In chaos.py, what did range(10) do?
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

� range is a built-in Python function that

generates a sequence of numbers,
starting with 0.

� list is a built-in Python function that

turns the sequence into an explicit list

� The body of the loop executes 10 times.

Python Programming, 2/e 39

Definite Loops

� for loops alter the flow of program
execution, so they are referred to as
control structures.

Python Programming, 2/e 40

Example Program: Future
Value

� Analysis

� Money deposited in a bank account earns
interest.

� How much will the account be worth 10
years from now?

� Inputs: principal, interest rate

� Output: value of the investment in 10
years

Python Programming, 2/e 41

Example Program: Future
Value

� Specification

� User enters the initial amount to invest, the
principal

� User enters an annual percentage rate, the
interest

� The specifications can be represented like
this …

Python Programming, 2/e 42

Example Program: Future
Value

� Program Future Value

� Inputs
principal The amount of money being

invested, in dollars
apr The annual percentage rate

expressed as a decimal number.

� Output The value of the investment 10 years
in the future

� Relatonship Value after one year is given by
principal * (1 + apr). This needs to be done
10 times.

Python Programming, 2/e 43

Example Program: Future
Value

� Design

Print an introduction

Input the amount of the principal (principal)

Input the annual percentage rate (apr)

Repeat 10 times:

principal = principal * (1 + apr)

Output the value of principal

Python Programming, 2/e 44

Example Program: Future
Value

� Implementation

� Each line translates to one line of Python
(in this case)

� Print an introduction
print ("This program calculates the future")

print ("value of a 10-year investment.")

� Input the amount of the principal
principal = eval(input("Enter the initial principal: "))

Python Programming, 2/e 45

Example Program: Future
Value

� Input the annual percentage rate
apr = eval(input("Enter the annual interest rate: "))

� Repeat 10 times:
for i in range(10):

� Calculate principal = principal * (1 + apr)
principal = principal * (1 + apr)

� Output the value of the principal at the end
of 10 years
print ("The value in 10 years is:", principal)

Python Programming, 2/e 46

Example Program: Future
Value
futval.py

A program to compute the value of an investment

carried 10 years into the future

def main():

print("This program calculates the future value of a 10-year investment.")

principal = eval(input("Enter the initial principal: "))

apr = eval(input("Enter the annual interest rate: "))

for i in range(10):

principal = principal * (1 + apr)

print ("The value in 10 years is:", principal)

main()

Python Programming, 2/e 47

Example Program: Future
Value

>>> main()

This program calculates the future value of a 10-year investment.

Enter the initial principal: 100

Enter the annual interest rate: .03

The value in 10 years is: 134.391637934

>>> main()

This program calculates the future value of a 10-year investment.

Enter the initial principal: 100

Enter the annual interest rate: .10

The value in 10 years is: 259.37424601

